Issung oppgave 6.16

Gor Losung til de andre oppgavene fra hap. 6,
gå til lenken "Loreboksoppgave bosninger")

- **6.16** The deuteron is a nucleus of "heavy hydrogen" consisting of one proton and one neutron. As a simple model for this nucleus, consider a single particle of mass m moving in a fixed spherically-symmetric potential V(r), defined by $V(r) = -V_0$ for $r < r_0$ and V(r) = 0 for $r > r_0$. This is called a spherical square-well potential. Assume that the particle is in a bound state with l = 0.
 - (a) Find the general solutions R(r) to the radial Schrödinger equation for $r < r_0$ and $r > r_0$. Use the fact that the wave function must be finite at 0 and ∞ to simplify the solution as much as possible. (You do not have to normalize the solutions.)
 - (b) The deuteron is only just bound; i.e., E is nearly equal to 0. Take m to be the proton mass, $m = 1.67 \times 10^{-27}$ kg, and take r_0 to be a typical nuclear radius, $r_0 = 1 \times 10^{-15}$ m. Find the value of V_0 (the depth of the potential well) in MeV (1 MeV = 1.6×10^{-13} J). (Hint: The continuity conditions at r_0 must be used. The radial wave function R(r) and its derivative R'(r) must both be continuous at r_0 ; this is equivalent to requiring that u(r) and u'(r) must both be continuous at r_0 , where u(r) = rR(r). The resulting equations cannot be solved exactly but can be used to derive the value for V_0 .)

R en nuble til round symmetrisk ombring westandre erisk symmetrisk polymeial massesenteret, som strengt to plassent symmetrice pa er bapet av utvekstede mes R=O slike at nuble onene. has or ev For essempelvis

er posisjons vektoren på messesentevet.

Vi autor altra (-Vo (r<ro, bundet tilaland) V(r) = { 0 (r>ro, kjemelstefter koot rekkenidde, sout en bundet tilstand med angulæt moment 1=0. y den rathielle Schrödinger Weningen $-\frac{t^2}{2m} \frac{3^2}{3r^2} u(r) + \frac{t^2(\ell+1)}{2m} u(r) + V(r) u(r) = Eu(r) \left[u(r) = rR(r) \right]$ kan vi attså se best fra det vinkslavhengige leddet, $\frac{\partial^2 u(r)}{\partial r^2} + Au(r) = 0 , \qquad A = \frac{2m(E-V)}{4z}$ med løsning (samme notasjon som i læreboba s, 64/65!) u(r) = C1eV-A'r + C2e-V-A'r der positive A gir imaginer eleszonent; let tilsværer å Skrive springen som U(1) = Pycos(VAx) + Dzem(VAx) Det er oppgitt at deuteronet er nesten ubsundet. (E<0) inder forstatt «keput usagt: Vo

For r< io: (Område 1)

 $A = \frac{2m(V_0 - |E|)}{\pi^2}$ ky = 2m/Vo-11=1 $u_1(r) = D_1 \cos(k_1 r) + D_2 \sin(k_1 r)$, tor r>10: (Område 2)

A = 2m (-|E|)

=> u2(r) = C1 e k2r + C2 e k2r R2 = 2mVIEIT

Krow of
$$r=0$$
; $Q=\frac{1}{2}$ $Q=0$: $Q=\frac{1}{2}$ $Q=\frac{1}$

Vo= 1 (6.626×10-34)2 = 0.821×10-11 MeV

dus.

Vo ≈ 51 MeV

Konsistens? Wiki pedia forteller at bindings for mille onene i et deuteron, altse IE/«Vo --

OK mate