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Abstract—Identifying biophysical mechanisms that provide
regulation and control is essential for our understanding of
living systems. However, the distance between life sciences and
control theory can be a challenge. Here, we describe, and
show the control theoretic properties of a set of biochemical
reaction schemes, so-called controller motifs. These controller
motifs have similarities with industrial control systems, and have
properties such as setpoints, integral gain, and setpoint weight.
Once identified, a system understanding of such mechanisms
can help synthetic biologists in selecting suitable targets to
alter in construction of new biological systems. From a control
theoretic viewpoint we identify which biochemical rate constant
or property affect the setpoint and the dynamic response of
a biophysical controller motif. We also show how a biological
system consisting of two antagonistic regulatory mechanisms can
be compared to a control engineering problem of controlling the
water level in a tank. The similarity between biological systems
and control engineering provides theoretical insight, and clears
the way to an engineer’s approach to synthetic biology.

I. INTRODUCTION

The ability of living systems to adjust to environmental
changes or disturbances are often compared and linked to con-
trol theory [1]–[4]. The biological and physiological concepts
of robustness [5]–[7], homeostasis [8]–[10], and adaptation
[11]–[13] are closely related to the control theoretic properties
of setpoint regulation and disturbance rejection [14].

A typical observation from biological systems is shown
in Fig. 1, a step-based disturbance and the corresponding
response in the output. An example of such behavior is the
change of firing rate of a single optic nerve cell (ommatidium)
from the compound eye of the horseshoe crab upon light
perturbations [11], [15].

We have recently presented a set of two-component molecu-
lar controller motifs [16], which are reaction kinetic schemes
of how two chemical species can interact to achieve robust
adaptation and homeostasis. These controller motifs show
how the synthesis and degradation of two chemical species,
controller species (E) and controlled species (A), can interact
to achieve robust control of the concentration of A, see Fig. 2.
In control theoretic terms A is called the controlled variable
(CV) and E is the manipulated variable (MV).

Uncontrolled disturbances in inflow and outflow of A,
marked di and do, are compensated for by E which adjusts
the compensatory flux j so that A is controlled to its setpoint
(homeostatic) value. This adjustment of the compensatory flux
happens either by activation (increasing E increases j) or by
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Fig. 1. A typical experimental disturbance step response from living
organisms.

inhibition (increasing E decreases j), marked with plus and
minus signs respectively.

There are four configurations by which E can affect A
through the compensatory flux j, these are:

1) Synthesis of A is:
a) Activated by E (inflow 1 and 3).
b) Inhibited by E (inflow 2 and 4).

2) Degradation of A is:
a) Activated by E (outflow 5 and 7).
b) Inhibited by E (outflow 6 and 8).

Likewise there are four configurations by which the con-
troller system (E) can be affected by A through the measure-
ment flux m.

Controller motifs can be identified to exist in cells and
organisms; the controller species (E) is typically an enzyme,
a hormone, or a transporter protein, and the controlled species
(A) is typically a vital chemical substance that has to be
maintained within a defined range to secure survivability. One
example is IRT1 a transporter protein (E) which controls
the uptake of iron (A) in plants [16], [17]. Another example
is parathyroid hormone (E1) and calcitonin hormone (E2),
found in many animals including mammals, which controls
the concentration of calcium in blood (A) [10], [18], [19].
Controller motifs have also been used in practical applications
in synthetic biology. Control structures have been artificially
implemented and used to create adapting gene networks [20]
and mechanisms that are able to prevent lethal disease out-
comes from virus infections in bacterial cells [21].
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Fig. 2. Two-component molecular controller motifs. The motifs are divided
into two subgroups: i) inflow controllers where the controller species (E)
affects the inflow of the controlled species (A), and ii) outflow controllers
where the controller species (E) affects the outflow of the controlled species
(A). The uncontrolled inflow and outflow of A, marked di and do, is
compensated for by the compensatory flux j. E receives information about
the level of A through the measurement flux m, z is the inflow or outflow
of E that is unaffected by A.

We became fascinated by the fact that the molecular con-
troller motifs show a dynamic response behavior close to that
of standard industrial controllers such as the PID controller.
In this paper we explore the control theoretic properties
of these molecular controller motifs in a control theoretic
(mathematical) framework. We show that the controller motifs
have properties that are familiar to industrial controllers such
as setpoint and integral gain, but also that they have more
unusual properties such as nonlinear measurement functions
and setpoint weight.

II. CONTROL THEORETIC PROPERTIES

The kinetics of the compensatory flux j with respect to
E can take different forms depending on the biochemical

reaction mechanism. Not all enzymes have the same reaction
mechanism, and even apparently simple reactions may be a
series of different subreactions, each with its own kinetics.

For the sake of simplicity we will here formulate compen-
satory fluxes that are activated by E as first-order kinetics with
respect to E. Compensatory fluxes that are that are inhibited
by E are described by the uncompetitive (catalytic) inhibition
type kinetics where E affects the maximum reaction rate [22].

Definition 1: Compensatory flux.
The compensatory flux j has the form:

j(·, E) = fcf(·)E, activation. (1)

j(·, E) = fcf(·)
KE

i

KE
i + E

, inhibition. (2)

fc is a constant and f(·) is a function describing the flux
dependence on other parameters (e.g. level of A, temperature,
or pH), and KE

i is the inhibition constant.
Treating A as the state variable we can set up the differential

equation describing the system which is to be controlled:

Ȧ = di(·)− do(·)± j(·, E) (3)

The compensatory flux is added in inflow motifs, and sub-
stracted in outflow motifs.

To set up an expression for the controller E we will first
define the measurement flux m, that is the flux by which
information about the amount of A is coupled to the inflow or
outflow of E. (How the controller gets information about the
state of the system.) Likewise as for the compensatory flux
the measurement flux can take different forms dependent on
the biochemical reaction mechanism. Using the same forms
for activation and inhibition as above we define:

Definition 2: Measurement flux.
The measurement flux m can take two forms:

m(·, E) = gcg(·)A, activation (4)

m(·, E) = gcg(·)
KA

i

KA
i +A

, inhibition. (5)

gc is a constant and g(·) is a function describing the flux
dependence on other parameters (e.g. level of E, temperature,
or pH), and KA

i is the inhibition constant.
Without loss of generality we will also write the z-flux on

the form zcz(·), where zc is a constant, and z(·) is a function
describing the flux dependence on other parameters (e.g. level
of E, temperature, or pH).

A. Controller motifs 1 and 6

For motif 1 and 6 the differential equation describing the
changes in E is:

Ė = zcz(·)− gcg(·)A (6)

For the simple case when g(·) and z(·) are 1 the setpoint for
controller motif 1 and 6 is (setting Ė = 0):

Aset =
zc
gc

(7)
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Rearranging (6) gives:

Ė = gc

[
z(·)zc

gc
− g(·)A

]
(8)

where (8) is structurally similar to the standard integral control
law from control engineering [23], i.e. u̇ = Gi(r−y) where r
is the reference (setpoint), y is the measurement and Gi is the
integral gain. In (8) gc acts as the integral gain, and is at the
same time part of the setpoint. This means that an increased
integral gain must be accompanied by an increase in the zc
parameter to keep the setpoint unchanged.

The z(·) function acts as a way to move the setpoint from
its basal value as given in (7). In this respect we can say that
z(·) acts as a setpoint weight.

If the measurement function g(·) is different from 1 we
do not have a direct measure of A. In organisms and cells
the function g(·) may reflect the overall signal-transduction
path by which information about the concentration of A is
transmitted to the controller.

B. Controller motifs 2 and 5

For motif 2 and 5 the differential equation describing the
changes in E is:

Ė = gcg(·)A− zcz(·) (9)

For the simple case when g(·) and z(·) are 1 the setpoint for
controller motif 2 and 5 is:

Aset =
zc
gc

(10)

Rearranging (9) gives:

Ė = −gc
[
z(·)zc

gc
− g(·)A

]
(11)

These two controller motifs are structurally (11) equal to
controller motifs 1 and 6 (7) except for the negative integral
gain Gi = −gc. This is necessary as controller motif 2 inhibits
the inflow of A while motif 1 activates the inflow of A, see
Fig. 2. To increase the inflow of A, through the compensatory
flux j, controller motif 2 must decrease E (negative gain)
instead of increasing it as motif 1 does. Likewise motif 5 must
decrease E to increase A (negative gain), as this will decrease
the compensatory flux and reduce the total outflow of A.

C. Controller motifs 3 and 8

For motif 3 and 8 the differential equation describing the
changes in E is:

Ė = gcg(·)
KA

i

A+KA
i

− zcz(·) (12)

For the simple case when g(·) and z(·) are 1 the setpoint for
controller motif 2 and 8 is:

Aset =
gcK

A
i

zc
−KA

i (13)

Rearranging (12) gives:

Ė =
zcz(·)g(·)
A+KA

i

[
1

z(·)

(
gcK

A
i

zc
−KA

i

)
(14)

−
(

1

g(·)
(
A+KA

i

)
− KA

i

z(·)

)]
The inhibition leads to a more complicated expression, but

the structure is still similar to the standard integral control
law. This can be seen more easily considering the simple case
when g(·) and z(·) are 1, and (14) reduces to

Ė =
zc

A+KA
i︸ ︷︷ ︸

Gi

[(
gcK

A
i

zc
−KA

i

)
︸ ︷︷ ︸

Aset

−A

]
(15)

where the bracketed value is the difference between the
setpoint and the actual A value.

For controller motifs 3 and 8 the integral gain Gi is
dependent on A, the state that is controlled. Seen in control
theoretical terms this is a sort of gain scheduling [23]. The gain
reduces as A increases, indicating that a higher gain might be
preferential at low concentrations of A where it will lead to
a faster response. The reduction in gain as A rises is slowing
the response so that controller induced overshoot into harmful
high concentrations of A are less likely, a property that might
increase cell and organism survivability.

The more complicated behavior of controller motif 3 and 8
is shown in how g(·) and z(·) interact with the control law.
The function z(·) is for these motifs not just a setpoint weight;
it affects the setpoint, the integral gain and the measurement
of A. The integral gain is also dependent on the g(·) function.

D. Controller motifs 4 and 7

These two controller motifs are in mathematical structure
equal to controller motifs 3 and 8 (14) except for the negative
integral gain. This is the same as seen between the motif pairs
2,5 and 1,6.

III. TIME AND FREQUENCY RESPONSE

We use inflow motif 3 to illustrate typical responses to step
changes in the setpoint and disturbance (we do only consider
motif 3 in this part due to space limitation and to avoid
repetition). The response is primarily dependent on the integral
gain parameter Gi. In the analysis we have set the inflow
disturbance di to zero and the outflow disturbance do is on the
form dcA. In addition we have used the following parameters:
fc = KA

i = dc = 1, zc = {0.5, 5, 50}, gc = {2.5, 25, 250},
and z(·) = g(·) = f(·) = 1. The three different zc and gc
values gives three different gain settings (Gi = {0.1, 1, 10}).

Fig. 3 shows how inflow controller 3 reacts to a 25% change
in its setpoint value for these gain settings. The setpoint step is
made by perturbing gc (changing the setpoint without changing
the gain). Since the gain has the form Gi = zc/(A+KA

i ) the
gain reduces when A increases, so that Gi = {0.1, 1, 10} for
A = 4 changes to Gi ≈ {0.083, 0.83, 8.3} when A = 5.

Perturbing the disturbance to create a step change gives the
response shown in Fig. 4.
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Fig. 3. Response to a step change in the setpoint for inflow controller motif
3. At time t = 5 the setpoint is changed from 4 to 5 by perturbing gc. The
response is shown for three different gain settings, Gi = 0.1 (solid blue),
Gi = 1 (dotted black), and Gi = 10 (dashed green).
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Fig. 4. Response to a step change in the outflow disturbance for inflow
controller motif 3. At time t = 5 the disturbance is changed from dc = 1 to
dc = 1.2. The response is shown for three different gain settings, Gi = 0.1
(solid blue), Gi = 1 (dotted black), and Gi = 10 (dashed green).

The response time of the controller motif is shorter with
high gains, but at the cost of overshoot and oscillations (Figs.
3 and 4). The response time and overshoot properties of a
biological system, with controller motifs as presented here,
are a reflection of reaction kinetic rates and constants, much
more than a reflection of any particular control structure.

To show the frequency response we have calculated the
closed loop transfer function [24], [25] of inflow controller
motif 3. Since the motif equations are nonlinear they have to
be linearized before finding the transfer function, which thus
is only valid in some region near to the setpoint. The closed
loop transfer function from the reference Aset to the output A
is:

M(s) =
zc

2fc
gcKA

i s2 + gcKA
i dcs+ zc2fc

(16)

and is plotted in Fig. 5. The bandwidth of the controller is
as expected increased when the integral gain is increased.
Nevertheless, as shown in the step responses (Figs. 3 and 4),
high gain leads to overshoot, also indicated by the resonance
top in Fig. 5.

IV. MANIPULATING THE CONTROLLER

Although not the main point of this paper, we will here
briefly discuss how some aspects from this treatment can be
used in practical applications. We use motif 3 to illustrate how
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Fig. 5. Close loop frequency response for inflow controller motif 3. The
response is shown for three different gain settings, Gi = 0.1 (solid blue),
Gi = 1 (dotted black), and Gi = 10 (dashed green).

our results can help synthetic biologist identifying suitable
targets in order to manipulate properties such as the setpoint
and the dynamic response.

To change the setpoint of motif 3, shown in (13), we can try
to alter either the rate of the measurement flux gc, the rate of
the z-flux zc, or the inhibition constant KA

i . However, to avoid
altering the dynamic response, the rate of the measurement
flux gc is the prime target as this parameter does not affect
the integral gain Gi of the controller. If the goal is to change
the dynamic response, (15) shows that the integral gain Gi

cannot be changed without changing the setpoint by altering
only a single parameters. Both the rate of the z-flux zc, and
the inhibition constant KA

i affects not only the gain but also
the setpoint. To change the gain without changing the setpoint
one option is to adjust zc and gc by the same proportion.

If the flux is an enzyme catalyzed reaction, the rate can be
changed by altering the enzyme’s catalytic constant (turnover
rate). This can be done in a static manner by genetically
changing the enzyme (e.g. changing the enzyme with another
related variant), or in a dynamic manner by introducing a
reaction inhibitor of the non-competitive type [22], or by using
a promotor to alter the level of transcription of the enzyme. For
example ClpXP protease (a serine protease complex) from the
bacteria E. coli have been expressed in yeast under control of
a repressible promoter [26]. By adjusting the promotor in the
incubation medium Grilly et al. [26] was able control the level
of ClpXP protease which again controlled the degradation rate
of a specific fluorescent protein.

V. COMBINATION OF INFLOW AND OUTFLOW MOTIFS

We will here show how the combination of one inflow
and outflow controller motif can work together to control the
concentration of a chemical species (controlled variable). Such
pairwise antagonistic control, where one chemical species (e.g.
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Fig. 6. Example system by combining an inflow controller of type 3 (left)
and an outflow controller of type 5 (right).

a hormone) acts to increase the concentration of the controlled
species while another chemical species acts to decrease it,
is often seen in biophysical systems. One example is the
blood calcium regulation by parathyroid hormone (increases
calcium) and calcitonin hormone (decreases calcium). The
reasons for why biological systems often have two controllers
instead of just one is not completely understood [27]. Saunders
and colleagues examined this question and introduced the
theory of integral rein control [28], [29] in an attempt to
explain the use of two controllers. By using our controller
motifs we will here show how an antagonistic system can be
explained and seen from an industrial viewpoint.

The system we consider contains two controller motifs,
shown in Fig. 6, with individual setpoints that control the same
variable, and hence, the system may appear over-specified. The
two controllers however, have different operational behaviors.
The right controller in Fig. 6 is an outflow controller (type 5)
that works at relative high inflows of the controlled variable
by removing excess of it. The controller to the left is an inflow
controller (type 3) that works at high outflow of the controlled
variable by adding sufficient amounts to the system.

The differential equations that describes the system are:

Ȧ(t) = di(t)− dc(t)A(t) + f in
c Ein(t) (17)

−fout
c A(t)Eout(t)

Ėin(t) = ginc
KA

i

KA
i +A(t)

− zinc
Ein(t)

Kin
M + Ein(t)

(18)

Ėout(t) = goutc A(t)− zoutc

Eout(t)

Kout
M + Eout(t)

(19)

Both controllers have g(·) = 1 in their measurement fluxes
and z(·) is a saturation type function of the level of Ein for
the inflow motif and Eout for the outflow motif (Michaelis-
Menten reaction kinetics [22]). The compensatory flux from
the inflow controller has f(·) = 1, whereas the compensatory
flux from the outflow controller has f(·) = A(t)

The real setpoints of the two controller motifs will not be
exactly the same as the theoretical setpoints shown in (10) and
(13), because z(·) is dependent on the level of the controller
variables. At low KM values however, the real setpoints and
the theoretical setpoints will be close (KM � E).

Using terminology from control engineering, a tank based
analogy (including valves and pumps) of the control problem is

Outflow
controllerInflow

controller
LCLC

)(2 tu

)(1 tu

Inflow
disturbance

Outflow
disturbance

)(ty

fc
in

)(2 tv

)(1 tv

)(2 tr

)(1 tr

fc
out

Fig. 7. Visualization of the control problem. See main text for definition of
components.

shown in Fig. 7, where the variables and constants are renamed
as follows:

1) y(t) = A(t) as the tank level (controlled variable).
2) u1(t) = Eout(t) and u2(t) = Ein(t) as manipulated

variables.
3) v1(t) = di(t) and v2(t) = dc(t) as inflow and outflow

disturbances.
4) r1(t) and r2(t) as the theoretical setpoints Aout

set (t) and
Ain

set(t).
5) f in

c as the pump capacity constant.
6) fout

c as the outflow valve capacity constant.
For the sake of the argument we will assume that the outflow
through the valves behaves linearly in the level of A(t).

The above shows the similarities between the biochemical
motifs in Fig. 6 and a common control engineering problem
as shown in Fig. 7.

This system functions properly when the setpoint of the
inflow controller Ain

set is lower or equal to the setpoint of the
outflow controller Aout

set . If this is not the case the controller
motifs will compete against each other, and as a consequence,
there will be windup issues. The reason for this is that the
inflow controller will add more and more of A whereas the
outflow controller will remove more and more of A in order
to track their respective setpoints.

Fig. 8 shows a simulation of this two controller system when
Ain

set < Aout
set , showing how the inflow controller dominates

during high outflows and how the outflow controller dominates
during high inflow.

For the period 0 < t < 120, the outflow disturbance v2
dominates over the inflow disturbance v1 (Fig. 8A), and thus
the inflow controller is active (Fig. 8C) and adds more of A
to maintain its setpoint r2.

When the disturbances are such that the output settles
between the two setpoints, as in the period 120 < t < 180,
the output of both controller motifs are close to zero. The
inflow motif is unactive because the level of A is higher than
the setpoint of this motif. The outflow motif is not yet active
because its setpoint is higher than the level of A.
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Fig. 8. Simulation demonstrating the disturbance rejection of a system with
both inflow and outflow controller motifs. A. The system is perturbed by the
disturbances in inflow v1 and outflow v2. B. The output y is held at the
inflow setpoint r2 under dominating outflow v2, and at the outflow setpoint
r1 under dominating inflow v1. C. The level of the controller species u1 and
u2 (manipulated variables). Model parameters in arbitrary units: ginc = 1000,
goutc = 2.0, Kin

M = Kout
M = KA

i = 0.001, and zinc = zoutc = 1.0.

When the inflow disturbance v1 dominates, as in the period
180 < t < 480, the outflow motif is active and maintains the
level of A at its setpoint r1.

VI. CONCLUDING REMARKS

We have shown that reaction kinetic schemes of biophysical
systems can be presented as control systems with setpoints,
manipulated variables and controlled variables. An important
property of these biochemical systems is that one can identify
a controller species that behaves structurally similar to the
integral control law from control engineering.

The similarities between biophysical systems and industrial
control problems was illustrated by looking at a biophysical
system consisting of two controller motifs (inflow and out-
flow), as structurally being the same problem as regulation of
the level of fluid in a tank.

We emphasize that when looking to identify control struc-
tures in physiological experiments the type of motif (in-
flow/outflow 1-8) is a qualitative assessment, while the quan-
titative response of such control structures is a function of
the reaction kinetics of the biochemical processes behind the
motif.
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