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Set-point of Controlled Variable A under Oscillatory Conditions

A-Activating Controller Motifs

TheA-activating motifs are 1, 2, 5, and 6 (Fig. 1, main paper). As an example
we use the harmonic oscillator described in Fig. 2d. The rate equation for E
is given as:

Ė = k4·A−
V Eset
max ·E

KEset

M + E
(S1)

Integral control is introduced by zero-order kinetics when KEset

M becomes
negligible in comparison to E (1, 2). Under oscillatory conditions the set-
point in the average concentration of A, <A>c, is obtained by using the
following condition

<Ė>c =

∮

c

Ė dt =
1

P

∫ P

0

Ė dt = 0 (S2)

where integration occurs along one orbit/cycle of stable oscillations with
period P . By inserting the expression of Ė (Eq. S1) into Eq. S2 we get

<Ė>c = k4·<A>c − V Eset

max

〈

E

KEset

M + E

〉

c

= 0 (S3)

Using ideal zero-order condition, KEset

M → 0, we have <E/(KEset

M +E)>c → 1,
i.e.,

〈

E

KEset

M +E

〉

c

= lim
KM→0

{

1

P

∫ P

o

(

E

KM+E

)

dt

}

=
1

P

∫ P

o

lim
KM→0

{

E

KM+E

}

dt

=
1

P

∫ P

o

1 dt = 1 (S4)

Inserting this result into Eq. S3, we get

<A>c =
V Eset
max

k4
= <A>set (S5)

Note that <A>c is identical with the set-point of A when the system is non-
oscillatory. This is shown in Fig. 3b and Fig. 5d for limit-cycle oscillators
based on motif 2 and 5, respectively.
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A-Inhibiting Controller Motifs

The A-inhibiting controller motifs are 3, 4, 7 and 8. As an example we use
controller motif 3.

+

−

A
,

E

Figure S1. Motif 3.

The rate equation for E is given as:

Ė =
k4·KA

I

KA
I + A

−
V Eset
max ·E

KEset

M + E
(S6)

Considering zero-order conditions in the Michaelis-Menten removal of E, the
condition <Ė>c=0 gives:

<Ė>c = k4·KA
I

〈

1

KA
I + A

〉

c

− V Eset

max = 0 (S7)

⇒
〈

1

KA
I + A

〉

c

def
=

1

P

∫ P

o

1

KA
I + A

dt =
V Eset
max

k4·KA
I

(S8)

where P is the period of the oscillator and V Eset
max /k4·K

A
I is the homeostatic

conserved property. In case the system becomes non-oscillatory the homeo-
static set-point of A, Aset, is given as (2):

1

KA
I + Aset

=
V Eset
max

k4·KA
I

⇒ Aset =
k4·KA

I

V Eset
max

−KA
I (S9)

Conservative Oscillator Types and Construction of their H-functions

We illustrate here the construction of the H-functions of the four different
conservative oscillator types that can be constructed by using motif 2.
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Oscillator with both A and E Removals Being Zero-Order

Fig. 2a in the main paper shows the reaction scheme and rate equations for
this case. For the sake of simplicity we assume that k1=0. The H-function
obeys the following equations, which are analogous to the Hamilton-Jacobi
equations (3)

∂H

∂E
= −Ȧ ;

∂H

∂A
= Ė (S10)

The H-function is constructed by integrating Ȧ and Ė, i.e.,

H = −
∫

Ȧ dE +

∫

Ė dA (S11)

Applying the zero-order conditions with respect to the removal kinetics of A
and E, we get

H = −
∫

(

−k2 +
k3·KE

I

KE
I + E

)

dE +

∫

(

k4·A− V Eset

max

)

dA (S12)

which leads to the final expression of H (see also Fig. S2)

H = k2·E − k3·KE
I · ln(K

E
I + E) + 1

2
k4·A2 − V Eset

max ·A (S13)
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Figure S2. Left panel: conservative oscillations in A and E using motif 2
with rate constant as given in Fig. 2b (t<50, k2=1). Initial concentrations
A0=0.1 and E0=1.0. Right panel: H-function (Eq. S13) showing the oscilla-
tions of the left panel as curves in A-E phase space and on the surface of H.
Dashed line indicates the oscillator’s set-point <A>c=2.0.
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Oscillator with Autocatalysis in A and E and First-Order Removals

In the case the degradation of E is first order, integral control in A can
be implemented by first-order autocatalysis in E (3). To keep the system
conservative with first-order degradation in A, the formation in A needs to
be first-order autocatalytic as indicated in Fig. S3 and shown by the rate
equations.

A

+

−

E

+

+

Figure S3. Motif 2 with autocatalysis and first-order degradations in A
and E.

The rate equations are:

Ȧ =
k3·KE

I

KE
I + E

·A− k2·A (S14)

Ė = k4·A·E − k5·E (S15)

Introducing the variables ξ = lnA and η = lnE, the rate equations can be
transformed to:

ξ̇ =
Ȧ

A
=

k3·KE
I

KE
I + E

− k2 =
k3·KE

I

KE
I + eη

− k2 (S16)

η̇ =
Ė

E
= k4·A− k5 = k4·eξ − k5 (S17)

By expressing E and A in Eqs. S16 and S17 in term of ξ and η, the function

H(ξ, η) =

∫

ξ̇ dη −
∫

η̇ dξ (S18)
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describes the kinetics of this conservative system and, after integration, is
given by

H(ξ, η) = (k3 − k2)·η−k3· ln(KE
i +eη)−k4·eξ+k5·ξ (S19)

By using ξ = lnA and η = lnE, H can be expressed in terms of A and E,
i.e,

H(A,E) = (k3 − k2)· lnE−k3· ln(KE
i +E)−k4·A+k5· lnA (S20)
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Figure S4. Left panel: conservative oscillations in A, E, and <A>t as
a function of time using motif 2 when both A and E are formed autocat-
alytically and degraded by first-order reactions (eqs. S14 and S15). Rate
constants: KE

I =0.1, k2=1.0, k3=10.0, k4=1.0, k5=2.0 Initial concentrations
A0=5.0 and E0=1.0. Right panel: H-function (Eq. S20) showing the oscilla-
tions of the left panel as curves in A-E phase space and on the surface of H.
Dashed line indicates the oscillator’s set-point <A>c=2.0.

Oscillator with Autocatalysis in A and Zero-order Removal of E

The scheme of this conservative oscillator is given in Fig. S5. The rate
equations are:

Ȧ =
k3·KE

I

KE
I + E

·A− k2·A (S21)

Ė = k4·A−
V Eset
max ·E

KEset

M + E
(S22)
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Figure S5. Motif 2 with autocatalysis and first-order degradation in A
and and zero-order removal of E.

The H-function is given by the following integral:

H(ξ, E) = −
∫

ξ̇ dE +

∫

Ė dξ (S23)

= −k3k6 ln(k6+E) + k2E + k4e
ξ − k5ξ (S24)

where

ξ̇ =
Ȧ

A
=

k3·KE
I

KE
I + E

− k2 (S25)

Inserting the expression ξ= ln(A) into Eq. S24 gives the final form ofH(A,E):

H(A,E) = −k3·k6· ln(k6+E) + k2·E + k4·A− k5· ln(A) (S26)

Fig. S6 shows the numerically calculated oscillations and the constructed
H-function describing these oscillations in phase-space.

Oscillator with Zero-order Removal of A and Autocatalysis in E

The reaction scheme of this conservative oscillator is given in Fig. S7.
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Figure S6. Left panel: conservative oscillations in A, E, and <A>t

as a function of time using motif 2 (Fig. S5) and rate eqns. S21 and
S22. Rate constants: KE

I =0.1, k2=1.0, k3=10.0, k4=1.0, V Eset
max =2.0, and

kEset

M =1×10−6. Initial concentrations A0=5.0 and E0=1.0. Right panel: H-
function (Eq. S26) showing the oscillations of the left panel as curves in A-E
phase space and on the surface of H. Dashed line indicates the oscillator’s
set-point <A>c=2.0.
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Figure S7. Motif 2 with autocatalysis and first-order degradation in A
and zero-order removal in E.

The rate equations are:

Ȧ =
k3·KE

I

KE
I + E

−
k2·A

KA
M+A

(S27)

Ė = k4·A·E − k5·E (S28)
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The H-function is given by the integral:

H(A, η) = −
∫

Ȧ dη +

∫

η̇ dA (S29)

where

η = lnE and η̇ =
Ė

E
= k4·A− k5 (S30)

⇒ H(A, η) = −
∫

(

k3K
E
I

KE
I +eη

−k2

)

dη +

∫

(k4A− k5) dA (S31)

= −k3K
E
I

∫

dη

KE
I +eη

+k2η +
1
2
k4·A2 − k5A (S32)

= −k3η+k3 ln(K
E
I +eη)+k2η +

1
2
k4·A2 − k5A (S33)

where
∫

dη

KE
I +eη

=
1

KE
I

(

η − ln(KE
I +eη)

)

(S34)
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Figure S8. Left panel: conservative oscillations in A, E, and <A>t as a
function of time using motif 2 (Fig. S7) and rate eqns. S27 and S28). Rate
constants: KE

I =0.1, k2=1.0, k3=10.0, k4=1.0, k5=2.0, and KA
M=1×10−6.

Initial concentrations A0=3.0232 and E0=10.2342. Right panel: H-function
(Eq. S35) showing the oscillations of the left panel as curve in A-E phase
space and on the surface of H. The curve on the H-surface is located at
H=0.9464 (calculated from the initial concentration A0 and E0). Dashed
line indicates the homeostats’s set-point <A>c=2.0.
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Inserting η= ln(E) into Eq.S33 leads to

H(A,E) = −k3 ln(E)+k3 ln(K
E
I +E)+k2 ln(E) + 1

2
k4·A2 − k5A (S35)

Fig. S8 shows the numerically calculated oscillations and the constructed
H-function.

Harmonic Approximation of Frequency in Conservative Oscillatory
Controllers

The harmonic approximation of the frequency in conservative controllers
provides insights why oscillatory controllers based on even-numbered mo-
tifs (Fig. 1) increase their frequency upon increased perturbation strengths.
As an example we show how the harmonic approximation of the frequency
can be obtained for the conservative oscillatory controller based on motif 2
(Fig. 2a). We assume zero-order removal in A and E and k1 = 0. The rate
equations read then:

Ȧ =
k3·KE

I

KE
I +E

− k2 (S36)

Ė = k4·A− V Eset

max (S37)

Taking the second time derivative of Eq. S36 gives:

Ä = −
k3·KE

I

(KE
I +E)2

· Ė = −
k3·KE

I

(KE
I +E)2

(k4A− V Eset

max ) (S38)

Eq. S38 can be rearranged into the following form:

Ä
k3·k4·K

E
I

(KE
I
+E)2

+ A =
V Eset
max

k4
= Ass = <A>set (S39)

When E in Eq. S39 is replaced by Ess we get the equation of a harmonic
oscillator, i.e., Ä/ω2+A=constant, with frequency ω given as

ω=

√

k3·k4·KE
I

(KE
I +Ess)2

(S40)
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and which approximately describes the frequency of the conservative oscil-
lator (Eq. S39). A corresponding second-order differential equation can be
derived for E:

Ë
k3·k4·K

E
I

(KE
I
+E)(KE

I
+Ess)

+ E =
k3·KE

I

k2
−KE

I =Ess (S41)

Ass and Ess denote the steady state concentrations when Ȧ=0 and Ė=0.
When replacing E by Ess in Eq. S41 the same harmonic frequency approx-
imation as described by Eq. S40 is obtained. Similar expressions are found
for the other E-inhibiting oscillatory controllers. Because the level of E
decreases with increasing perturbation strength, Eq. S40 indicates that the
E-inhibiting controllers will increase their frequency when perturbations are
increased as shown in Fig. 3 for the motif-2-based controller.

For the conservative oscillators based on motifs 4 and 8, i.e., when both A
and E are inhibiting, the harmonic oscillator approximations are:

Ä
ki·kj ·K

E
I
·KA

I

(KE
I
+Ess)2(KA

I
+Ass)2

+ A = Ass (S42)

Ë
ki·kj ·K

E
I
·KA

I

(KE
I
+Ess)2(KA

I
+Ass)2

+ E = Ess (S43)

where ki and kj denote rate constants of the reactions which are inhibited
by A and E.

For conservative oscillators based on motifs 1 and 5, the frequency is not
dependent on either A or E giving harmonic oscillators (see next section).

Harmonic Oscillations (Inflow Controller Motif 1)

Fig. S9 shows a two-component representation of motif 1. When KA
M ≪ A

and KEset

M ≪ E the system becomes an harmonic oscillator with set point
<A>c=k4/V

Eset
max .
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,

Figure S9. Motif 1. The two-component system shows harmonic oscil-
lations when KA

M ≪ A and KEset

M ≪ E, i.e. removal of A and E follow
zero-order kinetics.

We consider the rate equations:

Ȧ = k3·E −
k2·A

KA
M+A

(S44)

Ė = k4 −
V Eset
max ·E

KEset

M + E
·A (S45)

In case of zero-order conditions in the removal of A and E they reduce to:

Ȧ = k3·E − k2 (S46)

Ė = k4 − V Eset

max ·A (S47)

Taking the second time derivative of Eq. S46 and inserting the expression of
Ė into it, leads to:

Ä = k3·Ė = k3·k4 − k3·V Eset

max ·A (S48)

Dividing Eq. S48 by k3·V Eset
max gives the equation of a harmonic oscillator

around the set-point <A>c:

Ä

ω2
+ A =

k4
V Eset
max

= <A>c (S49)

where A(t) is given as:

A(t) = Aamp sin(ω·t+ φ) +<A>c (S50)

Aamp denotes the A-amplitude of the oscillations, ω is the frequency, and φ
is a phase angle.
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Quenching of Oscillations in Quasi-Conservative Systems

First-Order Degradation Restrains Oscillations

The amount of uncontrolled first-order degradation of A has a major influence
on the size of the parameter space for the extended motif 5 (Figs. 4a and 5d
in main paper) in which sustained oscillations are observed.Our results show
that first-order degradation has the ability to quench the oscillations and does
so for a large range of parameters. Fig. S10 shows how an increasing first-
order rate constant in the removal of A reduces the oscillatory behavior in the
k1 (uncontrolled inflow of A)-k5 (conversion of precursor e into E) parameter
space. The parameter space in which sustained oscillations are observed
shrinks markedly when when the first-order degradation rate constant k3 is
increased by one order of magnitude, i.e. from 0.01 to 0.1 (Fig. S10, panel c)

Figure S10. Period of oscillations for varying k1 and k5 values using the
limit-cycle verion of motif 5 described in the main paper (Fig. 4a). The
period is set to −1 when there are no oscillations (black area). Panels (a),
(b), and (c) show the results for three different values for the first-order A-
removing rate constant k3. The parameter values used are: k2=0.5, k4=0.7,
V Eset
max =0.5, KA

M=4× 10−3, and KEset

M =1× 10−2.

Fig. S10 also shows the propagation towards quasi-harmonic kinetics. With
increasing k5 values the periods approaches the harmonic values of 2π/

√
k2k4.

When the conversion from e to E is fast (high k5), the motif gives quasi-
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harmonic oscillatory period homeostasis as discussed in the main paper. A
very fast conversion from e to E does however lead to a non-oscillatory home-
ostasis in A, i.e., the range of k1 values that give oscillations shrinks with
increasing k5.

Zero-Order Degradation Facilitates Oscillations

How close the controlled degradation of A is to a perfect zero-order degrada-
tion is another factor that influences the size of the oscillatory regime. With
a controlled degradation of A by the compensatory flux jcomp

jcomp =
k2·A·E
KA

M + A
(S51)

KA
M becomes an indicator of how close the degradation is to perfect zero-

order, i.e. when KA
M → 0. Fig. S11 shows the size of the parameter space in

which one observes oscillatory behavior in the extended motif 5 (Fig 4a in the
main paper) for three different values of KA

M . The uncontrolled first-order
degradation rate constant k3 is 1× 10−2 in all cases.

Figure S11. Period of oscillations for varying k1 and k5 values using the
limit-cycle verion of motif 5 described in the main paper (Fig. 4a). The period
is set to −1 when there are no oscillations (black area). Panels (a), (b), and
(c) show the results for three different values of KA

M . The parameter values
used are: k2=0.5, k3=1× 10−2, k4=0.7, V Eset

max =0.5, and KEset

M =1× 10−2.

13



Robust Frequency Control With Inflow Controller Motif 2 and Al-
ternative I1/I2 Feedback

In the main manuscript the feedbacks from I1 and I2 were applied on inter-
mediate a (Fig. 7) or were ”mixed”, i.e. were applied to both ”a” and ”A”
(Fig. 8). In the following we show a model where the feedbacks from I1/I2
are returned to A only. The scheme is given in Fig. S12.

I
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+

+

+

14

1

11

A

+

−

Ee
9

+

Figure S12. Alternative I1/I2 feedback arrangement in a motif-2-based
oscillator. The feedbacks from I1 and I2 act on A only.

The rate equations are:

Ȧ =
k3·KE

I

KE
I +E

+ ki
g·I2 −

(

ko
g·A

KA
M2+A

)

·I1 −
k2·A

KA
M1+A

(S52)

ė = k4·A− k9·e (S53)

Ė = k9·e−
V Eset
max ·E

KEset

M +E
(S54)

İ1 = k11·E −
V I1
max·I1

KI1
M+I1

(S55)

İ2 = k14 −
(

V I2
max·I2

KI2
M+I2

)

·E (S56)
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The controller molecules (manipulated variables) E, I1, and I2 define the
set-points <A>set, <E>I1

set, and <E>I2
set, respectively, which are given by

<A>set =
V Eset
max

k4
; <E>I1

set =
V I1
max

k11
; <E>I2

set =
k14

V I2
max

(S57)

Fig. S13 shows the oscillator’s behavior, i.e., <A>, <E>, and the frequency
as a function of the perturbation k2 when <A>set=2.0, <E>I1

set = 5.0, and
<E>I2

set = 2.0. Due to the two set-points <E>I1
set and <E>I2

set the frequency
has a corresponding homeostatic regulation at two frequencies. Note that,
although<E> changes between different set-points when k2 is changed, <A>
is kept at its homeostatic set-point <A>set=2.0.
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Figure S13. <A>, <E>, and the frequency as a function of the per-
turbation strength k2. Rate constant values: k3=100.0, k4=1.0, KE
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max =2.0, KEset

M =1×10−6, KA
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g=1×10−2. Initial concentrations (the same for each k2 value): A0=0.6677,

E0=1.0536, e0=2.5827×10−2, I10=1.1614×10−3, I20=7.5008×102. The val-
ues of <A>, <E>, and the frequency were determined after 1500 time units.

15



 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  50  100  150  200
 0

 1

 2

 3

 4

 5

 6

A
, 
E

, 
I 1

, 
I 2

  
(a

u
)

<
A

>
(t

),
 <

E
>

(t
) 

(a
u

)

time (au)

I
1 I

2

E

A

<A>t

<E>t

k
2
 = 1.0 k

2
 = 7.0

Figure S14. Time plot of the system from Fig. S13 at low and high k2 val-
ues. At k2=1.0 controller I1 dominates and removes A to achieve the set-point
<E>I1

set=5.0. When k2 is high (7.0) controller I2 is up-regulated and adds A
such that <E> homeostasis at <E>I2

set=2.0 is obtained. A0=6.1923×10−3,
E0=5.9023, e0=2.5385×10−3, I10=153.26, I20=5.1252×10−7.

Fig. S14 shows the oscillations and the I1/I2 regulation of the system when k2
is changed from a relative low value (k2=1.0) to a relative high value (k2=7.0)
at time t=50.0 (dashed line). At low k2 values controller I1 is dominant and
removes A such that this controller’s set-point in <E> is maintained. At
high k2 values I2 is up-regulated and I1 downregulated. I2 now adds A to
the system in order to keep the <E> level at the set-point determined by
controller I2.
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