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Since Bünning’s seminal work on the physiological 
clock (Bünning, 1967), the study of circadian and bio-
logical rhythms has developed into a well-established 
interdisciplinary research field, where the use of 
genetic and molecular biology methods has given us 
a wealth of new information about the biological 
clock’s “ticking” components; the 2017 Nobel Prize in 
Physiology or Medicine was awarded to Jeffrey C. 
Hall, Michael Rosbash, and Michael W. Young for 
their discoveries of molecular mechanisms control-
ling the circadian rhythm.

Despite these advancements, we still know sur-
prisingly little about how organisms can keep time—
how, for example, plants measure day-night lengths 
or keep their circadian period compensated against 
environmental influences. To understand, for exam-
ple, what makes a set of chemical reactions oscillate, 
we need kinetic/mathematical techniques that allow 
us to describe and analyze them in more quantitative 
(kinetic/mathematical) terms. Here Forger’s book 
comes in.

Forger’s book is aimed at giving readers a practi-
cal guide, a mathematical toolbox, so to speak, on 
how to set up and deal with the equations describing 
oscillatory biochemical systems. The book is divided 
into three parts with a total of 10 chapters. A nice 
aspect of the book is that each chapter contains a 
Frontiers section, which covers timely topics by dis-
cussing or commenting on techniques but also deals 
with unresolved issues. Another nice feature is that 
each chapter contains Matlab code to illustrate a cer-
tain aspect covered in the chapter. Each chapter ends 
with exercises.

Part I (Models, chapters 2-4) covers basic modeling 
techniques, how to set up rate equations, model 
examples, Michaelis-Menten dynamics, the Goodwin 
oscillator, the Hodgkin-Huxley equations, and models 
for neuronal dynamics. Part I also covers stochastic-
ity by using the Gillespie method and takes up the 
conditions when feedback loops start to oscillate. 
There is a slight confusion in terminology when treat-
ing Michaelis-Menten kinetics. The way the Michaelis-
Menten equation is derived on page 51 is based on a 
steady-state approximation of the enzyme-substrate 
complex and not by a rapid equilibrium between sub-
strate and the enzyme-substrate complex. There is no 
need to assume a rapid binding between the enzyme 
and the substrate.

In Part II (Behaviors, chapters 5-7), Forger gives 
an outline of biochemical oscillators and classifies 
them as type 1 and type 2 dependent based on the 
type of bifurcation (SNIC or Hopf, respectively). This 
part also covers phase response curves and coupled 
oscillators. There is a rich literature on the kinetics 
and “taxonomy” of chemical oscillators, unfortu-
nately not mentioned by Forger, which provides 
alternative classifications of chemical/biochemical 
oscillators. The chemical oscillator literature (e.g., 
Eiswirth et al., 2007; Epstein and Showalter, 1996; to 
start with) provides a nice supplement to Forger’s 
book.

The final part of the book (Analysis and 
Computation, chapters 8-10) deals with problems of 
model parametrization and optimization and multi-
scale modeling. Statistical and computational tools 
for model building are reviewed and applied, such as 
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maximum likelihood, least squares, and Kalman 
filtering.

I very much like the use of the Goodwin oscillator 
to illustrate different topics throughout the book, 
even that chaos can be generated! Forger provides a 
historical note about the Goodwin oscillator on page 
108, about which I would like to comment. While 
Goodwin assumed in his original equations an inhi-
bition cooperativity of one, later analysis showed that 
there is a problem with such an assumption. While it 
is correct, as Forger (and several others) have pointed 
out, that the cooperativity m needs to be larger than 8 
in order to obtain oscillations, the condition m > 8 
applies to models only where degradation terms are 
described by first-order reactions with respect to the 
degrading species. However, in Goodwin’s initial 
formulation (1963), the Goodwin equations were 
described with zero-order degradation terms, that is, 
of the form
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with m = 1. The two variables X and Y show conser-
vative oscillations.1 The equations can be extended to 
show limit-cycle oscillations, even for m = 1, when 
three (or more) dynamical variables are included, in 
addition to the use of Michaelis-Menten degradation 
terms (Kurosawa and Iwasa, 2002; see also exercise 7 
on page 129 of Forger’s book). The change from zero-
order to first-order degradation terms (while main-
taining the m = 1 condition) was clearly a mistake 
made in the later papers by Goodwin, but it illus-
trates the influence that degradation kinetics have on 
the system’s oscillatory behavior.

Forger’s book is an excellent choice for stu-
dents/researchers who are interested to model bio-
logical rhythms and already have a working 
knowledge of differential equations/Matlab, chem-
ical kinetics, and/or nonlinear dynamics. Readers 
with a more (molecular) biology background may 
find the book more difficult at certain stages but 
may find it useful to first cover some of the mathe-
matical basics from other texts as those recom-
mended by the author.

Note

1. Based on the conservative nature of the oscillators,
Goodwin (1963) used a statistical thermodynamic the-
ory to describe the coupling between them.
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