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Computational Methods

Rate equations were solved numerically by using the FORTRAN subrou-
tine LSODE (Livermore Solver of Ordinary Differential Equations) (1) and
MATLAB (www.mathworks.com). Molecular noise was implemented into
the model by the FORTRAN subroutine RAN1 (2). To make notations
simpler, concentrations are denoted by their names without square brack-
ets.

Kinetics of scaffold-supported degradation of p53

by Mdm2

We consider four rapid equilibria between scaffold C, p53, and Mdm2 (Fig.
3b):

p53 + C ⇄ C · p53; KA =
p53 C

(C·p53)
(1)

Mdm2 + C ⇄ Mdm2 · C; KB =
Mdm2 C

(Mdm2·C)
(2)

Mdm2·C + p53 ⇄ Mdm2·C·p53; KBA =
(Mdm2·C) p53

(Mdm2·C·p53)
(3)

C·p53 + Mdm2 ⇄ Mdm2·C·p53; KAB =
(C·p53) Mdm2

(Mdm2·C·p53)
(4)

The total amount of scaffold C0 can be written as:

C0 = C + C·p53 + Mdm2·C + Mdm2·C·p53

= Mdm2·C·p53

{

KA

p53

KAB

Mdm2
+

KAB

Mdm2
+

KBA

p53
+ 1

}

(5)

Assuming that C0 is constant and that the degradation velocity v
p53

degr of

p53 is proportional to the amount of the ternary complex, i.e., v
p53

degr =
k′
·(Mdm2·C·p53), we get:

v
p53

degr =
k′C0

KA

p53

KAB

Mdm2
+ KAB

Mdm2
+ KBA

p53
+ 1

(6)
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Kinetics of p53 induced Mdm2 synthesis

We consider a rapid equilibrium of p53 binding at the Mdm2 promoter re-
gion, where the corresponding dissociation constant between bound and un-
bound p53 is denoted by K

p53

d,mdm2prom. Assuming simple saturation behavior
the rate of Mdm2-mRNA (mdm2) and the synthesis rate of the Mdm2-
protein can be formulated as follows:

dmdm2

dt
=

ktranscrp53

K
p53

d,mdm2prom + p53
− kmdm2

degr × mdm2 (7)

(
dMdm2

dt
)synth = ktransl × mdm2 (8)

Assuming further that Mdm2-mRNA is in a steady state by setting Eq. 7
to zero, gives the following expression for the rate of Mdm2 synthesis:

(
dMdm2

dt
)synth =

ktranslktranscr

kmdm2

degr

×

p53

K
p53

d,mdm2prom + p53
(9)

In the case p53 binds weakly at the Mdm2 promoter, Eq. 9 becomes first-
order with respect to p53 as written in Eq. 9 in the main text:

(
dMdm2

dt
)synth =

ktranslktranscr

kmdm2

degr

p53 = kMdm2

s p53 (10)
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Random variation of rate constants

Rate constants ki were randomly varied between a minimum value ki,min

and a maximum value ki,max by using the relationship

ki = ki,min + (ki,max − ki,min) · r (11)

where r is a random number between zero and one generated by the Fortran
subroutine RAN1 (2). Table 1 in the main text provides an overview of the
regions in which the individual rate constants were varied. Because during
integration of the rate equations separate calls for r are made for each rate
constant at every time step, rate constants have different random variation
profiles (see Fig. 1 below).
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Figure 1: Random variation of rate constants
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ki ki,min ki,max

k
p53
s 0.0 2.0

k 0.8 1.5

kMdm2
s 0.5 1.3

k
EMdm2

set

cat 1 × 106 6 × 106

K
EMdm2

set

M 1 × 10−6 6 × 10−6

k
Ed

cat 0.0 50.0

K
Ed

M 0.0 100.0

Table 1: Random variation of rate constants
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