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Abstract

Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable.
Integral feedback is a control theoretic concept which has long been known to keep a controlled variable A robustly (i.e.
perturbation-independent) at a given set-point Aset by feeding the integrated error back into the process that generates A.
The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and
even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and
oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in
oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological
oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic
concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate
biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning
oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators (‘‘oscillatory
homeostats’’) to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in
frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a
certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological
applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and
p53 signaling, and the involvement of circadian rhythms in homeostatic regulation.
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Introduction

The biological motivation of this work can be summarized as

follows: How can homeostatic mechanisms possibly work when

many or even most of the regulatory processes within a cell are

based on oscillations? Versions of this question and how oscillatory

processes participate in homeostatic and adaptive mechanisms

have been repeatedly asked and discussed [1–5]. Our aim is to

identify and build homeostatic/adaptive motifs on a rational basis

with possible applications within physiology and synthetic biology.

In this paper we apply control-engineering and kinetic methods

and show how the classical concept of homeostasis [6,7] is linked

to oscillatory behavior. We demonstrate how biological oscillators

can have robust (perturbation-independent) homeostatic/adaptive

behaviors both with respect to average concentration of a

regulated variable and with respect to a robust control of the

oscillator’s frequency. By taking three examples, we argue that

such properties appear closely linked to the controlled period

lengths of the p53-Mdm2 oscillatory system and circadian rhythms

[1,8] or to the homeostatic regulation of cytosolic calcium during

signaling [9].

Organisms have developed defending homeostatic mechanisms

in order to survive changing or stressful conditions by maintaining

their internal physiologies at an approximately constant level

[7,10,11]. In this respect, many compounds are tightly regulated

within certain concentration ranges, because they are essential for

cellular function, but may lead to dysfunction and diseases when

their concentrations are outside of their regulated regimes. The

term ‘‘homeostasis’’ was introduced by Cannon [6,7] to indicate

that the internal milieu of an organism is regulated within narrow

limits. The examples Cannon addresses in 1929 [6] are still actual

research topics, such as the regulations of body temperature, blood

sugar, blood calcium and blood pH levels [12–15]. Today many

more homeostatic controlled compounds have been identified,

including hormones [16], transcription factors and transcription

factor related compounds [17], cellular ions such as plant nitrate
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levels [18,19], iron [20], and calcium [21]. The Supplementary

Material of Ref. [22] contains further examples.

Because many biochemical processes are oscillatory [1,8,23–

27], Cannon’s definition of homeostasis has been perceived as

unsatisfactory and various alternative homeostasis concepts have

been suggested. The term predictive homeostasis [1] has been

introduced in order to stress the anticipatory homeostatic behavior

of circadian regulation. Other concepts include allostasis [2,5] to

focus on the concerted and interwoven nature of the defending

mechanisms, rheostasis [3] to put emphasis on set-point changes,

and homeodynamics [4] to stress the nonlinear kinetic behaviors of

the defending mechanisms as part of an open system.

The appearance of cybernetics together with system theory [28–

31] caused an interest to understand homeostasis and biological

control from the angle of system analysis and control theory [32–

39] by introducing control-engineering concepts such as integral
control [22,40–45]. Integral control allows to keep a controlled

variable (say A) precisely and robustly at a given set-point Aset by

feeding the integrated error back into the process by which A is

generated [46]. To gain insights how integral control and

homeostasis may appear in biochemical and physiological

processes, we started [43] to study two-component negative

feedback controllers, where one component is the (homeostatic)

controlled variable A, while the other is the manipulated or

controller variable E. Each controller consists of the two species A
and E and three fluxes, the inflow and outflow to and from E and

an E -controlled compensatory flux (either inflow or outflow) of A,

denoted jcomp. The compensatory flux compensates for distur-

bances in the level of A caused by perturbations in other

uncontrolled inflows/outflows of A. By considering activating or

inhibitory signaling events from A to E and vice versa, eight basic

negative feedback configurations (controller motifs, Fig. 1a) can be

created [22,47]. Two kinetic requirements leading to integral

control have so far been identified, one based on a zero-order

kinetic removal of the manipulated variable E [22,43,48], the

other on an autocatalytic formation of E in association with a first-

order degradation [45]. Fig. 1b gives a brief summary of these two

kinetic approaches by using motif 5 as an example. For details, the

reader is referred to [22,45]. We feel that this approach provides a

rational basis to build networks which allow to view the behaviors

of the individual controllers and to understand emergent

properties of the overall network. By combining individual

controller motifs with integral control we previously showed that

an integrative and dynamic approach to cellular homeostasis is

possible, which includes storage, excretion and remobilization of

the controlled variables [19,22,49].

In the present study we extend the concept of homeostasis to

include sustained oscillatory or pulsatile conditions. We show that

oscillatory homeostats based on the controller motifs in Fig. 1a can

maintain robust homeostasis in A. For controllers where E is

inhibiting the compensatory flux (motifs 2, 4, 6, and 8, Fig. 1a), the

frequency can be shown to depend on the level of E and therefore

on the applied perturbation strength. In this class of controllers the

frequency generally increases upon increased perturbation

strengths; here we use motif 2 as a representative example. For

the remaining controller motifs the frequency has been found to be

less dependent upon perturbations. As a representative example

for this behavior we use motif 5. We further show that robust

frequency control can be achieved by either using additional

controllers, which keep the average levels of A and E homeostatic

regulated, or by using the intrinsic harmonic/quasi-harmonic

properties of motifs 1 or 5. The biological significance of these

findings is discussed with respect to the oscillatory signaling of

cytosolic calcium and p53, as well as the regulating properties of

circadian rhythms with respect to homeostasis and temperature

compensation.

Results

Kinetic Approach to Implement Integral Control
We consider the negative feedback motifs in Fig. 1. A general

condition for integral control can be formulated if the rate

equation of the manipulated variable E allows for a rearrangement

in form of two functions g(E) and h(A), and where the integral of

1=g(E) with respect to E exists and can be written as G(E). Then,

the set-point in A is determined by the solution of h(A)~0, i.e.

_EE~h(A):g(E) ð1Þ

Rearranging Eq. 1 and requiring steady state conditions gives:

_EE

g(E)
~ _GG(E)~h(A)~0 ð2Þ

Eq. 2 has been applied for nonoscillatory steady states with

g(E)~1 by using zero-order kinetic degradation/inhibition of E
[22,43] or with g(E)~E by using first-order autocatalytic

formation and degradation in E [45]. Other functions of g(E)
may be possible but plausible reaction kinetic mechanisms need to

be identified. For the sake of simplicity, we consider here that

integral control is achieved by a zero-order removal of E using

g(E)~1.

To extend the condition of Eq. 2 to sustained stable and

marginally stable oscillations, we observe that the integral of the

periodic reaction rates _AA and _EE along a closed orbit c in the

system’s phase space is zero. For _EE this can be written as:

v _EEwc ~

þ
c

_EE dt~

þ
c

h(A)dt~0 ð3Þ

Dependent on whether A is activating or inhibiting the

production or removal of E, two expressions for the set-point of

the oscillatory controller can be derived from Eq. 3. In case A is

activating (motifs 1, 2, 5, 6) and by assuming first-order kinetics

with respect to A in the rate equation for E, the set-point of A is

given by (see Eq. S1 in (File S1))

vAwc~

þ
c

A(t)dt~vAwset ð4Þ

where the integral is taken along one (or multiple) closed and

stable orbit(s) in the system’s phase space. With increasing time t,

the average concentration of A, vAwt, will approach its set-point

vAwset, i.e.,

vAwt~
1

t
:
ðt

0

A(t)dt?vAwset when t?? ð5Þ

When A is inhibiting the production or removal of E (motifs 3,

4, 7, 8) and assuming (for the sake of simplicity) that the inhibiting

term has a first-order cooperativity with respect to A with an

inhibition constant KA
I , the following expression is conserved and

perturbation-independent (see derivation in File S1, Eq. S8):

Oscillatory Homeostats
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v

1

KA
I zA

wc~

þ
c

dt

KA
I zA(t)

~constant ð6Þ

Homeostasis by Oscillatory Controllers
To illustrate the homeostatic response of the oscillatory

controllers, we use, as mentioned above, conservative and limit-

cycle versions of inflow controller motif 2 and outflow controller

motif 5 as representative examples. These motifs have been

chosen, because they represent different ways to achieve negative

feedback and homeostasis of the controlled variable A. In motif 2

(as in motifs 4, 6, and 8) E inhibits the compensatory flux, while in

motif 5 (as in motifs 1, 3, and 7) the compensatory flux is activated

by E. A limit-cycle version of motif 6 will be used to discuss

cytosolic Ca2+ oscillations in terms of a homeostatic mechanism.

Conservative Oscillatory Controllers. A conservative sys-

tem is a system for which an energy or Hamiltonian function (H-

function) can be found and for which the values of H remain

constant in time. Conservative oscillators show periodic motions

characterized by that they in phase space do not occur in isolation

(i.e. they are not limit cycles). For a given H-level h a periodic

motion (a closed path in phase space) is surrounded by a

continuum of near-by paths, obtained for neighboring values of

h [50]. The dynamics of a two-component conservative oscillator

can be derived from the H-function using the following equations:

LH

LE
~{ _AA ;

LH

LA
~ _EE ð7Þ

which are analogous to the Hamilton-Jacobi equations from

classical mechanics. In general, solutions of these equations are not

necessarily oscillatory, but here we focus only on the conservative

Figure 1. A basic set of two-component homeostatic controller motifs with two implementations of integral control. (a) Compound A
is the homeostatic controlled variable and E is the controller or manipulated variable [22]. The motifs fall into two classes termed as inflow and
outflow controllers, dependent whether their compensatory fluxes jcomp add or remove A from the system. In motifs outlined in gray the controller
compound E inhibits the compensatory flux, while in the other motifs E activates the compensatory flux. (b) middle figure shows a standard control
engineering flow chart of a negative feedback loop, where the negative feedback results in the subtraction of the concentration of A (blue line) from
A’s set-point (red line) leading to the error (Aset{A). The error feeds into the integral controller (brown box). The controller output (the integrated
error) is the concentration of E (green line) which regulates the process that creates A. The perturbations which affect the level of A are indicated in
orange color. (b) left panel shows the structure of negative feedback (outflow) controller 5. The colors correspond to those of the control engineering
flow chart. For example, the set-point (red) is given by the ratio between removing and synthesis rates of E, while the integral controller (brown) is
related to the processing kinetics of E, in this case E is removed by zero-order [22,43]. (b) right panel shows the same outflow controller (motif 5).
The only difference is that the integral controller is now represented by a first-order autocatalytic formation (indicated by brown dashed arrow) and a
first-order removal with respect to E [45].
doi:10.1371/journal.pone.0107766.g001
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oscillators, which can be derived from the eight controller motifs

(Fig. 1a). Dependent on how integral control is implemented,

some of the conservative oscillators are well-known; they are: the

harmonic oscillator [51] based on either motifs 1 or 5 (using zero-

order implementation of integral control; see left panel in Fig. 1b),

the Lotka-Volterra oscillator [45,52,53] also here based on motifs 1

or 5 (but using the autocatalytic implementation of integral

control; see right panel in Fig. 1b), and Goodwin’s oscillator from

1963 [54] based on motif 2. In the literature the Goodwin

oscillator comes in two versions, which are both based on motif 2.

There is a conservative oscillator version from 1963 [54] with two

components. There is also another version from 1965 with three

components [55]. The difference between the two versions lies in

the kinetics of the degradation rates of the oscillators’ components.

In the 1965 three-component version the degradation rates are

first-order with respect to the degrading species, while in the

conservative case (1963 version) the degradation rates have zero-

order kinetics. These kinetic differences change the oscillatory

behavior of the two systems significantly. To get limit-cycle

oscillations, it is well-known from the literature [56] that the three-

dimensional system where the components are degraded by first-

order kinetics requires a cooperativity of the inhibiting species of

about 9 or higher. Our results presented here using motif 2

confirms Goodwin’s 1963 results that when components are

degraded by zero-order kinetics the system can oscillate with a

cooperativity of 1 with respect to the inhibiting species E. Here we

also extend Goodwin’s results by showing that limit-cycle
oscillations can be created based on motif 2, but still using a

cooperativity of 1 with respect to the inhibiting species E (see

below).

The following two requirements are needed to get conservative

oscillations for any motif from Fig. 1a: (i) integral control has to be

implemented in the rate equation for E, and (ii) all removal of A
should either occur by zero-order kinetics with respect to A, or,

when the removal of A is first (or nth)-order with respect to A, the

formation of A needs to be a first (or nth)-order autocatalytic

reaction [45]. When conditions (i) and (ii) are fulfilled, a function

H(A,E) can be constructed, which describes the dynamics of the

system analogous to the Hamilton-Jacobi equations from classical

mechanics, where the form of H depends on the system’s kinetics.

Details on how H is constructed for the various situations is given

in File S1.

Fig. 2a shows a reaction kinetic representation of motif 2, which

is closely related to Goodwin’s 1963 oscillator [54]. It was

Goodwin who first drew attention to the analogy between the

dynamics of a set of two-component cellular negative feedback

oscillators and classical mechanics [54]. In this inflow-type of

controller, increased outflow perturbations (i.e., increased k2

values) are compensated by a decreased average amount of E (i.e.,

vEw, Fig. 2b), thereby neutralizing the increased removal of A

by use of an increased compensating flux

jcomp~k3
:KE

I =(KE
I zE) ð8Þ

In this way the average level of A, vAw, is kept at its set-point

VEset
max=k4 (see Eq. S5 in the File S1). During the adaptation in

vAw (when k2 is changed) the controller’s frequency as well as

the vEw-level are affected. The frequency v for each of the

eight conservative oscillators can roughly be estimated by a

harmonic approximation (see File S1), which in case of motif 2

(Fig. 2a) is given by (assuming k1~0)

v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
:k4
:KE

I

p
KE

I zEss

ð9Þ

Ess (~k3KE
I =k2{KE

I ) is the steady state of E, which is obtained

when _AA~0 (Fig. 2a). Because the level of vEw is decreasing with

increasing k2 values, Eq. 9 indicates, and as shown by the

computations in Figs. 2b and 2c, that the frequency of the

oscillator increases with increasing perturbation strengths (k2

values) while keeping vAw at its set-point. In fact, the increase in

frequency upon increased perturbation strengths appears to be a

general property of oscillatory homeostats, where the manipulated

variable E inhibits the compensatory flux (for limit-cycle examples,

see below).

At high k2 values, i.e., when the E level becomes lower than

KE
I , the compensatory flux jcomp approaches its maximum value

k3. At this stage the homeostatic capacity of the controller is

reached. Any further increase of k2 cannot be met by an increased

compensatory flux and will therefore lead to a breakdown of the

controller. For discussions about controller breakdowns and

controller accuracies, see Refs. [22,48].

The scheme in Fig. 2d shows outflow controller motif 5, which

will compensate any inflow perturbations of A (due to changes in

k1) by increasing the compensatory flux

jcomp~k3
:E ð10Þ

When KA
M%A and KEset

M %E the oscillator is harmonic and is

described by a single sine function which oscillates around the set-

point vAwset~VEset
max=k4 with frequency v~

ffiffiffiffiffiffiffiffiffiffiffi
k3
:k4

p
and a

period of 2p=
ffiffiffiffiffiffiffiffiffiffiffi
k3
:k4

p
. Increased levels in k1 (Figs. 2e and 2f) are

compensated by increased vEw levels which keep vAw at its

set-point. Harmonic oscillations can also be obtained for the

counterpart inflow motif 1 (see Fig. S9 and Eqs. S44–S50 in File

S1).

For the harmonic oscillators (motifs 1 or 5) vAw-homeostasis

is kept by an increase in vEw, which matches precisely the

increase in the (average) compensatory flux without any need to

change the frequency. For the other motifs either an increase or a

decrease in frequency is observed with increasing perturbation

strengths dependent whether E inhibits or activates the compen-

satory flux, respectively.

Limit-Cycle Controllers. The conservative oscillatory con-

trollers described above can be transformed into limit-cycle

oscillators by including an additional intermediate, and, as long

as integral control is present, homeostasis in A is maintained by

means of Eq. 4 or 6. Fig. 3a gives an example of a limit-cycle

homeostat using motif 2. Dependent on the rate constants the

oscillations can show pulsatile/excitable behavior (Fig. 3b). In

these pulsatile and highly nonlinear oscillations vAw homeosta-

sis is maintained at the set-point vAwset~VEset
max=k4, although the

peak value in A exceeds the set-point by over one order of

magnitude (Fig. 3b). As already observed for the conservative case,

an increase in the perturbation strength (i.e., by increasing k2)

leads to an increase in frequency while homeostasis in vAw is

preserved (Fig. 3c).

Similarly, a limit-cycle homeostat of motif 5 can be created

(Fig. 4a) by including intermediate e and maintaining integral

control with respect to A. With increasing perturbation strengths

(k1 values, Fig. 4b), homeostasis in vAw is maintained by

increasing vEw. Compared to the conservative situation

Oscillatory Homeostats
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Figure 2. Representation and kinetics of conservative oscillators based on motif 2 and motif 5. (a)–(c) ‘‘Goodwin’s oscillator’’ (motif 2).
Conservative oscillations occur when KA

M%A and E%KEset

M ; the latter condition introduces integral feedback and thereby robust homeostasis [22,43].

(b) Conservative oscillations in A and E, with k1~0:0, k2~1:0, KA
M~1|10{6 , k3~6:0, KE

I ~0:5, k4~1:0, VEset
max~2:0, KEset

M ~1|10{6 . Initial
concentrations: A0~1:5, E0~1:0. At time t = 50.0 k2 is changed from 1.0 to 3.0. (c) vAw, vEw, and frequency as a function of the perturbation k2.
While the frequency increases and vEw decreases with increasing k2 , vAw is kept at its set-point V Eset

max=k4~2:0. (d)–(f) Harmonic oscillator

representation of motif 5. Conservative (harmonic) oscillations occur when KA
M%A (or k2~0) and E%KEset

M . (e) Harmonic oscillations in A and E, with

k1~1:0 (the perturbation), k2~0:0, k3~1:0, KA
M2~1|10{6 , k4~1:0, V Eset

max~2:0, and KEset

M ~1|10{6 . At time t = 50.0 k1 is changed from 1.0 to 3.0.
Initial concentrations: A0~1:5, E0~1:0. (f) vAw, vEw, and frequency as a function of the perturbation k1 . Typical for the harmonic oscillator is the
constancy of the frequency upon changing k1 values. vEw increases with increasing k1 , while vAw is kept at its set-point VEset

max=k4~2:0.
doi:10.1371/journal.pone.0107766.g002
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(Fig. 2f), the frequency now shows both slight decreasing and

increasing values. However, the overall frequency changes are not

as large as for motif 2, indicating that similar to the harmonic case,

the frequency of the motif 5 based oscillator has a certain intrinsic

frequency compensation on k1-induced perturbations (Fig. 4c).

Robust Frequency Control and Quenching of Oscillations
In this section we present for the first time biochemical models

that can show robust (perturbation-independent) frequency

control. There are several biological oscillators where the

frequency/period is under homeostatic regulation. Probably the

best known example is the temperature compensation of the

circadian period, i.e. these rhythms show an approximately

constant period length of about 24 h at different but constant

temperatures [57]. Temperature compensation is also observed in

certain ultradian rhythms [58,59]. Another biological oscillator

with a fairly constant period is the p53-Mdm2 system [60], where

the number of oscillations may indicate the strength of the DNA

damage in the cell [61].

We show two ways how robust frequency control can be

achieved. One is due to the presence of quasi-harmonic kinetics,

i.e. the system, although still being a limit-cycle oscillator, behaves

more like a harmonic oscillator. On basis of experimental results,

we believe that the p53-Mdm2 system falls into this category (see

discussion below). In the other approach, frequency homeostasis is

obtained by regulating E itself by additional inflow/outflow

controllers I1,I2. This approach leads to many possible ways how

I1,I2 can interact with the central negative feedback A-E loop/

oscillator and several ways are illustrated using motif 2 and motif

5. Such an approach may apply to the period homeostasis of

circadian rhythms (see discussion below).

Robust Frequency Control by Quasi-Harmonic

Kinetics. We consider now the case when the intermediate

that has been implemented to obtain limit-cycle behavior

(compounds a or e in Figs. 3a or 4a) obeys approximately the

steady-state assumption, i.e., _aa&0 or _ee&0. We term the

oscillators’ resulting behavior as quasi-conservative, because these

systems still have a limit-cycle, but behave also as a conservative

system. An interesting case occurs when the system is quasi-

harmonic, i.e. when motifs 1 or 5 are used. In this case the limit-

cycle oscillations and the frequency can approximately be

described by a harmonic oscillator, i.e., a single sine function.

This is illustrated in Fig. 5 where an increased k5 value is applied

to the scheme of Fig. 4a (which leads to _ee&0). Fig. 5a shows the

oscillations for three different perturbations (k1 values). The

oscillations in A show a practically perfect overlay with a single

sine function, outlined in black for k1~1:0: When k1 is increased

the oscillations (outlined in blue) undergo a phase shift and an

increase in amplitude, but the frequency stays constant at the value

of the (quasi) harmonic oscillator. For high k1 values the

Figure 3. A limit-cycle model of controller motif 2. (a) Reaction scheme. Rate equations: _AA~k1 { k2
:A=(KA

MzA)zk9
:a;

_EE~k4
:A{V Eset

max
:E=(KEset

M zE); _aa~k3
:KE

I =(KE
I zE) { k9

:a. (b) Homeostatic response of the model for three different perturbations (k2 values).

For time t between 0 and 50 units, k2~1:0|103 , for t between 50 and 100 units, k2~2:0|103 , and for t between 100 and 150 units, k2~3:0|103 . In
the oscillatory case vAw at time t is given as vAwt~(1=t)|

Ð
t
0 A(t’)dt’ (ordinate to the right) showing that vAw is under homeostatic control

despite the fact that A peak values may be over one order of magnitude larger than the set-point. (c) vAw, vEw, and frequency values as a
function of k2 . Simulation time for each data point is 100.0 time units. Note that vAw is kept at vAwset independent of k2. Rate constant values (in

au): k1~1:0, k3~1:0|105 , k4~1:0, KE
I ~1:0|10{3 , KA

M~1:0, V Eset
max~2:0, KEset

M ~1:0|10{6 , and k9~2:0. It may further be noted that the
degradation kinetics with respect to A are no longer zero-order as required in the conservative case (Figs. 2a–c). Initial concentrations in (b): A0~1:5,
E0~0:3, and a0~166:17. Initial concentrations in (c) for each data point: A0~1:725|10{6 , E0~1:585, and a0~0:861.
doi:10.1371/journal.pone.0107766.g003
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A-amplitude of the oscillator becomes saturated, which is a

secondary effect of the oscillator’s homeostatic property. Due to

symmetry reasons and because the oscillator is locked on to the

harmonic frequency, the value of A cannot exceed beyond twice

the level of its set-point, which in this case has been set to 12.5

(Figs. 5a and 5b). As in the harmonic case (Fig. 2f), vEw

increases with increasing k1 (Fig. 5b). Fig. 5c shows the approach

to the limit-cycle (outlined in black). When k5 increases further

and the steady state approximation for e becomes better and

better, the limit-cycle disappears and the system becomes purely

harmonic.

Quenching of Oscillations in Quasi-Conservative

Systems. A requirement to obtain conservative oscillations

and an oscillatory promoting condition for limit cycle oscillations

is the presence of zero-order degradation in A. Changing the zero-

order degradation in A may lead to the loss of oscillations. For

example, in quasi-conservative systems the oscillations can be

effectively quenched by either adding a first-order removal term

with respect to A (with rate constant k3, Fig. 4a) or by replacing

the zero-order kinetics degradation in A (using k2, KA
M ) by first-

order kinetics with respect to A, or by increasing KA
M . Fig. 5d

illustrates the suppression of the quasi-harmonic oscillations by

adding a first-order removal with respect to A. In contrast, when

an oscillatory system does not show quasi-conservative kinetics,

addition of a first-order removal with respect to A does not

necessarily abolish the oscillations. A detailed parameter analysis

showing how the value of k5 affects the period of the oscillations

and how first-order degradation in A affects the size of the

parameter space in which sustained oscillations are found is given

in (Figs. S10 and S11 in File S1).

Robust Frequency Homeostasis by Control of

vEw. When considering the relationship between vEw and

the frequency, as for example shown in Fig. 3c, we wondered

whether it would be possible to design an oscillator with a robust

frequency homeostasis by using an additional control of vEw.

For this purpose, two extra controllers I1 and I2 with their own set-

points for vEw are introduced. Note, that the integral control for

vAw by E is still operative and has its own defined set-point. In

the following we show three examples of robust frequency control

using motifs 2 and 5. Two of the examples illustrate different

feedback arrangements of I1 and I2 using motif 2. An example

using still another arrangement using motif 2 is described in File

S1 (Figs. S12–S14).

In Fig. 6a a set-up for robust frequency homeostasis is shown by

using a limit-cycle oscillator based on controller motif 5. The set-

points for vEw, given by the rate equations for I1 and I2, are

vEw
I1
set = k6=VI1

max and vEw
I2
set = VI2

max=k7. Fig. 6b shows the

results for a set of calculations when k1 varies from 1 to 20 au. In

these calculations it was assumed that the I1 and I2 controllers

have the same set-point of 20.0 au. In the absence of controllers I1

and I2, the frequency varies as indicated in Fig. 4c, which in

Fig. 6b is shown as gray dots. When I1 and I2 controllers are both

Figure 4. A limit-cycle model of controller motif 5. (a). Rate equations: _AA~k1{k2
:E:A=(KA

MzA){k3
:A; _ee~k4

:A{k5
:e;

_EE~k5
:e{VEset

max
:E=(KEset

M zE). (b) Homeostatic behavior in vAw illustrated by three different perturbations (k1 values). At time t~500:0 k1 is
changed from 4.0 to 10.0, and at t~1000:0 k1 is changed from 10.0 to 20.0 (indicated by solid arrows). The set-point of vAw is given as

V Eset
max=k4~2:0. Rate constant values: k1 is variable, k2~1:0, KA

M~0:1, k3~0:0, k4~0:5, k5~0:2, VEset
max~1:0, and KEset

M ~1:0|10{6 . Initial

concentrations: A0~1:9964|10{2 , e0~8:0983, and E0~12:0258. (c) vAw, vEw, and frequency values as a function of k1 showing that vAw is
kept at the set-point independent of k1 . Rate constants as in (b). Initial concentrations for each data point: A0~7:6383|10{1 , e0~1:6887, and
E0~18:8155. Simulation time for each data point is 10000.0 time units.
doi:10.1371/journal.pone.0107766.g004
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Figure 5. Quasi-harmonic behavior of motif 5 oscillator (Fig. 4a). For time tv300, a perfect overlay between the numerical calculation of A(t)
(blue color) and the single harmonic A(t)~Aampl

: sin (2p=Pzw) zvAwset (black color) is found, where k1~1:0, Aampl~5:0791, P~31:44,

w~{0:05, and vAwset~V Eset
max=k4 ~12:5. Aampl and P represent the numerically calculated amplitude and period length, respectively. w was

adjusted to give a closely matching overlay. Other rate constant values (numerical calculations): k2~5:0|10{2 , k3~0:0, KA
M~1:0|10{6 , k4~0:8,

k5~20:0, VEset
max~10:0, and KEset

M ~1:0|10{6 . Initial concentrations: A0~12:4290, e0~0:4952, and E0~1:0139|10{4. At times t~300 and t~600
(solid arrows) k1 is changed to respectively 5.0 and 10.0. For these k1 values the amplitude of A has reached its maximum, which is twice the value of
the set-point. (b) vAw, Aampl , vEw, and frequency as a function of k1 . Simulation time for each data point is 1000.0 time units. (c) Demonstration
of limit-cycle behavior of the quasi-harmonic oscillations. Same initial conditions as in (a) with k1~1:0, and e0~0:4952. (d) Same system as in (a), but
at times t~200 and t~500 (solid arrows) k3 is changed and kept to 0.1. The oscillations are efficiently quenched, but A remains under homeostatic
control.
doi:10.1371/journal.pone.0107766.g005
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active, vEw shows robust homeostasis at 20.0 (Fig. 6b) and the

frequency is practically constant (black dots). Fig. 6c shows the

response when controller I1 has been ‘‘knocked out’’. While in this

case the vAw values are still under homeostatic control, vEw

approaches its set-point (defined by vEw
I2
set) only at high k1

values, but without a control of the frequency. When controller I2

is knocked-out (Fig. 6d), control of vEw and frequency

homeostasis is observed. Due to the absence of controller I2,

homeostasis in vEw and in the frequency is lost for higher k1

values. The role of I2 in this type of regulator is to diminish/

suppress the inflow to A by k1, such that controller I1 can supply

the necessary amount of A in order to keep vEw and the

frequency under homeostatic control. This mechanism is illustrat-

ed in Fig. 6e by a ‘‘static’’ work mode of I2, where the

concentration of I2 is kept constant. In this case the k1-region of

frequency homeostasis increases with increasing but constant

concentrations of I2 (Fig. 6f).

A corresponding approach to achieve robust frequency homeo-

stasis by using motif 2 is shown in Fig. 7a. The set-up differs from

that used for motif 5 (Fig. 6a) by allowing that I1 and I2 act upon a
and upstreams of A. For the sake of simplicity, both controllers are

assumed to have set-points at 20.0 au. Note that in this version of

the motif 2 oscillator, the removal of A is now purely first-order

with respect to A (using only k2). Because motif 2 has been the

core for many circadian rhythm models, we will below discuss

implications of robust frequency control with respect to properties

of circadian rhythms. In this context we note that the region

outlined in gray in Fig. 7a shows the part of the oscillator where

rate constants have no influence on the frequency, i.e. the

sensitivity coefficients L(frequency)=Lki are zero.

Fig. 7b shows the homeostatic behavior in frequency (black

dots) in comparison with the uncontrolled oscillator (gray dots). In

the controlled case, both vAw and vEw are under homeostatic

regulation with set-points of 2.0 au and 20.0 au, respectively. To

elucidate the effect of the added controllers I1 and I2, we removed

them one by one (knocking them out). In Figs. 7c and 7d

controllers I1 and I2 have been removed, respectively. When

outflow controller I1 is not operative, the system is not able to

remove sufficient a at low k2 values. In this case vEw levels are

high and unregulated at low k2’s and showing an increase in

frequency. Only at sufficiently high k2 values controller I2 is able

to compensate for the decreased levels in vEw. The situation is

reversed in Fig. 7d, when controller I2 is not operative. At low k2

values controller I1 can remove excess of E by diminishing the

level of a and keeping vEw at its set-point. However, the vEw

regulation breaks down at high values of k2, because no additional

supply for E via a can now be provided. In this way controllers I1/

I2 act as an antagonistic pair of outflow/inflow controllers,

respectively. Note that the by E controlled level of vAw (with

set-point of 2.0 au) is kept at its set-point independently whether

vEw is regulated by I1/I2 or not. Fig. 7e shows the oscillations

when both I1 and I2 are operative (Fig. 7b, black dots) and k2

being changed from 3.0 to 8.0 at t = 250.0 units (indicated by

arrow). The level of vEw is controlled to its set-point (20.0),

while the amplitude of A has increased with the increase of k2. For

each spike (after steady state has been established) the average

amount of A is the same and independent of the value of k2,

leading to the same frequency and homeostasis in vAw.

Oscillator with Two Homeostatic Frequency Domains
In the I1 and I2-controlled oscillators described above the set-

point of vEw will determine the frequency. Fig. 8a shows an

example of a motif-2-based homeostat, where I1 and I2 feed back

to A and a, respectively. For an example where I1 and I2 feed back

to A only, see Fig. S12 in File S1. In the calculations of Fig. 8,

different set-points for vEw by controllers I1 and I2 have been

chosen. As a result, dependent whether the perturbation strength

(value of k2) is high or low, the oscillator shifts between two

different homeostatic controlled frequency regimes separated by a

transition zone (Fig. 8b). Fig. 8c shows the oscillations, vAw and

vEw values and the frequency switch when k2 is changed from

3.0 to 8.0.

Discussion

Classifications of Biochemical Oscillators and Influence of
Positive Feedback

There has been several approaches how chemical and

biochemical oscillators can be understood and classified [62–66].

The controller motifs shown in Fig. 1a can be considered as a

basic set of negative feedback oscillators. For example, the Lotka-

Volterra oscillator can be viewed as a negative feedback oscillator

based on motifs 1 or 5, but where integral control is implemented

in terms of autocatalysis [45] and where the controlled variable A
is formed by autocatalysis and degraded by a first-order process

with respect to A. The same motif can show harmonic oscillations,

when integral control and removal of the controlled variable is

incorporated by means of zero-order kinetics. Two additional

oscillator types based on the same motif can be created by

implementing mixed autocatalytic/zero-order kinetics for integral

control and for the generation/degradation of the controlled

variable (‘Text S1’). The other motifs can be extended in a similar

way, giving rise to 32 basic (mostly unexplored) oscillator types.

This type of classification supplements the one given earlier by

Franck, where the eight negative feedback loops where combined

with their positive counterparts to create what Franck termed

antagonistic feedback [63] An often discussed question is the role

positive feedback, or autocatalysis, may play in biological

oscillators. Using a Monte-Carlo approach Tsai et al. [26] studied

the robustness and frequency responses of oscillators with only

negative feedback loops and oscillators with a combined positive-

plus-negative feedback design. The authors concluded that the

combination of a negative and a positive feedback is the best

option for having robust and tunable oscillations. In particular, the

positive loop appears necessary to make the oscillator tunable at a

constant amplitude. We here have shown how homeostasis and

tunable oscillators may be achieved without any positive feedback

(but generally associated with a changing amplitude). To put our

results in relation to those from Tsai et al. [26], we wondered,

triggered by the comments from a reviewer, how an oscillator with

an autocatalytic-based integral controller might behave in

comparison. For this purpose we used controller motif 2 (Fig. 9a),

analogous to the scheme shown in Fig. 3a. Interestingly, and in

agreement with the findings by Tsai et al. [26], the autocatalytic

step resulted now in relaxation-type of oscillations. As expected,

the frequency of the oscillator increases with increasing perturba-

tion strengths k2, and vAw is under homeostatic control

(Fig. 9b). However, as indicated by the results of Tsai et al. the

oscillator’s amplitude has now become independent of k2! These

results show that Franck’s original concept of antagonistic

feedback, i.e. combining positive and negative feedback loops in

various ways [63] appear to be of relevance for many biological

oscillators [26].

Homeostatic Regulation under Oscillatory Conditions
In his definition of homeostasis Cannon introduced the term

homeo instead of homo to indicate that certain variations in the

concentrations of the homeostatic controlled species are still
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allowed, but within certain limits [6]. As typical examples, Cannon

mentions the variations of body temperature, variations in blood

sugar, blood calcium, and blood pH levels [6]. We have shown

that the concept of homeostasis can be extended to oscillatory

conditions and that the term set-point still can be given a precise

meaning, even when peak values of the controlled variable may

exceed the set-point by over one order of magnitude (Figs. 3 and

7). In these cases the set-point relates to the mean value of the

oscillatory species, vAw. Many compounds are known to be

under a tight homeostatic regulation to avoid cellular dysfunction,

such as is the case for cytosolic calcium. There is no particular

reason to assume that protective homeostatic mechanisms should

cease to exist once a compound becomes oscillatory and functions,

as in case of calcium, as a signaling device. Allowing a species (such

as cytosolic calcium) to oscillate while defending the mean value of

these oscillations makes it possible to relay signaling without

exposing the cell to long term overload. In the following we discuss

three examples where oscillatory homeostats appear to be

involved: in the homeostatic regulation of calcium and p53 during

oscillations/signaling, and in the homeostatic function and period

regulation of circadian rhythms.

Figure 6. Oscillator based on motif 5 with robust frequency control. (a) Reaction scheme. Rate equations:
_AA~k1

:KI2

I =(KI2

I zI2)zkg
:I1{k2

:E:A=(KA
MzA){k3

:A; _ee~k4
:A{k5

:e; _EE~k5
:e{V Eset

max
:E=(KEset

M zE); _II1~k6{E:V I1
max

:I1=(KI1

MzI1); _II2~k7
:E{

V I2
max

:I2=(KI2

MzI2). (b) Demonstration of robust frequency control. vAw, vEw, and frequency are shown as functions of k1 . Rate constants:

k1~1:0, k2~1:0, KA
M~0:1, k3~0:0, k4~0:5, k5~0:2, V Eset

max~1:0, KEset

M ~1:0|10{6 , k6~20:0, V I1
max~1:0, KI1

M~1:0|10{6, k7~1:0, VI2
max~20:0, and

KI2

M~1:0|10{6 . Set-points for E by controllers I1 and I2 are given as vEw
I1
set~k6=V I1

max~20:0 and vEw
I2
set~V I2

max=k7~20:0, respectively. Initial

concentrations for each data point (black dots): A0~0:7638, E0~18:8155, e0~1:6887, I1,0~1:6695|103 , and I2,0 ~ 2:7657|102. Gray dots show
the frequency as a function of k1 without control by I1 and I2 . (c) System as in (b), but controller I1 not present. (d) System as in (b), but controller I2

not present. (e) Reaction scheme of oscillator, but with a constant I2 concentration. Rate constants otherwise as in (b). (f) Frequency as a function of
k1 for the system described in (e) using different constant I2 concentrations (indicated within the graph). The homeostatic region of the frequency
increases with increasing I2 concentrations.
doi:10.1371/journal.pone.0107766.g006
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Figure 7. Oscillator based on motif 2 with robust frequency control. (a) Reaction scheme. Rate equations: _AA~k1{k2
:Azk9

:a;
_EE~k4

:A{V Eset
max

:E=(KEset

M zE); _aa~(k3zki
g
:I2):KE

I =(KE
I zE){(k9zko

g
:I1):a; _II1~k11

:E{VI1
max

:I1=(KI1

MzI1); _II2~k14{E:V I2
max

:I2=(KI2

MzI2). Shaded

area indicates part of the model for which the control coefficents of the frequency/period with respect to the parameters within this area become
zero when frequency homeostasis is enforced by controllers I1 and I2. (b) Demonstration of frequency homeostasis by varying k2 . Black dots show
the frequency when controllers I1 and I2 are active. Rate constants: k1~0:0, k2~1:0, k3~1:0|106 , k4~1:0, KE

I ~1:0|10{6 , VEset
max~2:0,

KEset

M ~1:0|10{6, k9~2:0, ki
g~1:0|102 , ko

g~1:0|10{3 , k11~5:0, VI1
max ~ 1:0|102 , KI1

M~1:0|10{6 , k14~99:99, VI2
max~5:0, and KI2

M~1:0|10{6 .

Set-points for E by controllers I1 and I2 are given as vEw
I1
set~V I1

max=k11~20:0 and vEw
I2
set~k14=VI2

max ~ 19:998, respectively. The set-point

vEw
I1
set of the outflow controller I1 has been set slightly higher than vEw

I2
set for the inflow controller I2 to avoid integral windup and that the

controllers work ‘‘against’’ each other [22]. Initial concentrations for each data point (black dots): A0~50:4903, E0~23:9425, a0~3:2629,
I1,0~8:2955|103 , and I2,0~57:8533. Gray dots show the frequency as a function of k2 for the uncontrolled case, i.e., in the absence of controllers I1

and I2 . (c) System as in (b), but controller I1 is ‘‘knocked out’’ by setting k11 and I1,0 to zero. Homeostasis occurs only at high k2 values when
controller I2 is active. (d) System as in (b), but inflow controller I2 is inactivated by setting k14 and I2,0 to zero. Frequency homeostasis is observed for
low k2 when controller I1 is active. At high k2 values the frequency homeostasis breaks down, because controller I2 is not present to compensate the
increased outflow of A, which leads to low vEw values. (e) Oscillations of system in (b) illustrating frequency homeostasis. At time t~250 (solid
arrow) k2 is changed from 3.0 to 8.0. Initial concentrations: A0~27:3167, E0~31:7283, a0~0:1237, I1,0~1:3473|104 , and I2,0~5:0919|102 .
doi:10.1371/journal.pone.0107766.g007
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Calcium Signaling. Cytosolic calcium (Ca2+) levels are

under homeostatic control to concentrations at about 100 nM

while extracellular levels are in the order of 1 mM. High Ca2+

concentrations are also found in the endoplasmatic reticulum (ER)

and in mitochondria (between 0.1–10 mM), which act as calcium

stores. To keep cytosolic Ca2+ concentrations at such a low level

Ca2+ is actively pumped out from the cytoplasm into the

extracellular space and into organelles by means of various Ca2+

ATPases located in the plasma membrane (PMCA pumps) and in

organelle membranes [21,67]. Dysfunction of these pumps leads to

a variety of diseases including cancer, hypertension, cardiac

problems, and neurodegeneration [68–70]. During Ca2+ signaling

[71,72] cytosolic Ca2+ levels show oscillations [73–75] but

signaling can also occur as individual sparks or spikes [76]. Ca2+

oscillations have been found to occur in many cell types and differ

considerably in their shapes and time scales with peak levels up to

one order of magnitude higher than resting levels. Similar to the

behavior of stimulated (perturbed) oscillatory homeostats as for

example shown in Fig. 3b, Ca2+ oscillations have been found to

increase their frequency upon increased stimulation of cells [73–

75]. The frequency modulation of Ca2+ oscillations [77] is

considered to be an important property for controlling biological

processes [75]. The tight homeostatic regulation of cytosolic

calcium combined with its oscillatory signaling suggests that

oscillatory homeostats appear to be operative also under signaling

conditions.

Although a variety of mathematical models have been suggested

to describe Ca2+ oscillations [78–84], none of them have so far

included an explicit homeostatic regulation of cytosolic Ca2+.

Fig. 10a shows how Ca2+ oscillations can be obtained based on an

outflow homeostatic controller, which removes excess and toxic

amounts of cytosolic Ca2+. The model considers a stationary

situation of an activated cell, where a Ca2+ channel is activated by

an external signal leading to the inflow of Ca2+ into the cytosol.

The increased Ca2+ levels in the cytosol induce an additional

inflow of Ca2+ from the internal Ca2+ store, a mechanism termed

‘‘Calcium-Induced Calcium Release’’ (CICR) [85]. Both inflows

are lumped together and described by rate constant k1. The CICR

flux is maintained by pumping cytosolic Ca2+ into the ER and

keeping the Ca2+ load in the ER high. It should be mentioned that

Figure 8. Oscillator based on motif 2 with robust frequency control but alternative feedback regulation by I1 and I2. (a) Reaction

scheme. Rate equations: _AA~k9
:a{k2

:A=(KA
M1zA){ko

g
:A:I1=(KA

M2zA), _EE~k4
:A{V Eset

max
:E=(KEset

M zE); _aa~k3
:KE

I =(KE
I zE){k9

:azki
g
:I2 ; _II1~

k11
:E{VI1

max
:I1=(KI1

MzI1); _II2~k14{E:V I2
max

:I2=(KI2

MzI2). (b) Using different set-points vEw
I1
set~VI1

max=k11~10:0 and vEw
I2
set~k14=VI2

max ~ 5:0,
the frequency (solid dots) can switch between two homeostatic frequency regimes, dependent whether k2 is low or high. The two regimes are

separated by a transition zone. Rate constants: k2~1:0, k3~20:0, k4~0:1, VEset
max~1:5, KEset

M ~1:0|10{6, k11~1:0, V I1
max~10:0, KI1

M~1:0|10{6,

k14~5:0, VI2
max~1:0, KI2

M~1:0|10{6 , KE
I ~1:0, ki

g~ko
g~1:0|10{2 , KA

M1~KA
M2~1:0|10{6 . Initial concentrations: A0~0:6677, E0~1:0536,

a0~2:5828|10{2 , I1,0~1:1614|103 , and I2,0~7:5008|102 . (c) Oscillations of system in (b) illustrating frequency switch. At time t~500 (solid
arrow) k2 is changed from 2.0 to 8.0. Initial concentrations: A0~19:7178, E0~0:6272, a0~0:4178, I1,0~1:3696|102 , and I2,0~12:9828.
doi:10.1371/journal.pone.0107766.g008
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the cause of the Ca2+ entry across the plasma membrane into the

cytosol is not fully understood and different views have been

expressed how this can occur [86,87].

For the sake of simplicity, the Ca2+ concentration in the ER is

considered to be constant and only the pumping of Ca2+ from the

cytosol into the extracellular space is taken into account without an

increased cooperativity (Hill-function) with respect to the Ca2+

concentration. Fig. 10b shows the oscillations of cytosolic Ca2+

and the homeostat’s performance at different inflow rates k1
:Ca2z

ext

into the cytosol, which can reflect different external Ca2+

concentrations and/or different activation levels of the cell. As

observed experimentally [74] the period of the oscillations

decreases with increased external Ca2+ concentration or with an

increased stimulation of the cell. As shown by vCa2z
cyt wt in

Fig. 10b and by total vCa2z
cyt w in Fig. 10c, on average, robust

Ca2+ homeostasis is preserved at varying Ca2+ inflow rates. In the

absence of oscillations the Ca2+ concentration is still kept at its

homeostatic set-point (Fig. 10b).

Why Ca2+ oscillations? A non-oscillatory signaling mechanism

by cytosolic Ca2+ would clearly be limited, because a homeostatic

regulation of cytosolic Ca2+ would not allow varying Ca2+ levels as

a function of external stimulation strengths. On the other hand, a

frequency-based signaling due to an oscillatory Ca2+-homeostat

would overcome these limitations, because homeostasis is still

maintained. This has been a brief outline on how Ca2+ oscillations

may be understood on basis of oscillatory homeostasis. More

detailed studies will be needed, for example by including the

homeostatic aspect in existing models in order to investigate in

more detail the implications oscillatory homeostats have on the

regulatory role of Ca2+.

p53 Signaling. p53 is a transcription factor with tumor

suppressor properties. In more than half of all human tumors p53

is mutated and in almost all tumors p53 regulation is not

functional [88]. In the presence of DNA damage and other

abnormalities p53 initiates the removal of damaged cells by

apoptosis. A central negative feedback component in p53

regulation is Mdm2, an ubiquitin E3 ligase, which leads to the

proteasomal degradation of p53 and other tumor suppressors [89].

In the presence of DNA damage, p53 is upregulated by several

mechanisms [90–92], and both p53 and Mdm2 have been found

to oscillate [60]. An interesting feature of these oscillations is that

their amplitude is highly variable, while their frequency is fairly

constant [60]. The mean height of the oscillations was found to be

constant [61]. It was also found that with an increased strength of

DNA damaging radiation the number of cells with increased p53

cycles increased statistically [61]. Jolma et al. [51] used the basic

negative feedback motif 5 (where A is p53 and E is Mdm2) and

found that the influence of noise on the harmonic properties of the

oscillations was able to describe the variable amplitudes and the

approximately constancy of the period. Fourier analysis of the

experimental data indeed showed that the p53-Mdm2 oscillations

have a major harmonic component [93] supporting a quasi-

harmonic character of the p53-Mdm2 oscillations. For such

Figure 9. A limit-cycle model of controller motif 2 using autocatalysis as an integral controller. (a) Reaction scheme. Rate equations:
_AA~k1{k2

:A=(KA
MzA)zk9

:a; _EE~k4
:A:E{k6

:E; _aa~k3
:KE

I =(KE
I zE){k9

:a. (b) Homeostatic response of the model for three different
perturbations (k2 values). For time t between 0 and 250 units, k2~0:5, for t between 250 and 500 units, k2~2:0, and for t between 500 and 750
units, k2~5:0. vAw at time t is defined as in Fig. 3. (c) vAw, vEw, and frequency values as a function of k2 . Simulation time for each data point is
2000.0 time units. Note that vAw is kept at Aset~15:0 (solid black line) independent of k2 . Rate constant values (in au): k1~0:0, k3~20:0, k4~0:1,
KE

I ~1:0, KA
M~1:0|10{3, k6~1:5, and k9~30:0. Initial concentrations in (b): A0~22:09, E0~1:71|1010, and a0~4:0|10{11. Initial concentrations

in (c) for each data point are the same as in (b).
doi:10.1371/journal.pone.0107766.g009
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harmonic or quasi-harmonic oscillations our results (Figs. 2f and

5b) indicate that p53 is homeostatic regulated both in average

concentration and in period length to allow to expose the system

probably to an optimum amount of p53 during each cycle.

Because the number of p53 cycles appear positively correlated

with an increased exposure of damaging radiation, the total

amount of released p53 may be related to a repair mechanism. A

support along these lines comes from a recent study, which

indicates that p53 oscillations lead to the recovery of DNA-

damaged cells, while p53 levels kept at their peak value lead to

senescence and to a permanent cell cycle arrest [94]. Thus, like for

cytosolic Ca2+, elevated and oscillatory p53 levels seem to remain

under homeostatic control in order to mediate signaling events

and information which appear to be encoded in the oscillations.

Homeostasis of the Circadian Period. Circadian rhythms

play an important role in the daily and seasonal adaptation of

organisms to their environment and act as physiological clocks

[8,95,96]. Functioning as clocks, their period is under homeostatic

regulation towards a variety of environmental influences, such as

changing temperature (‘‘temperature compensation’’) or food

supply (‘‘nutritional compensation’’). Circadian rhythms partici-

pate in the homeostatic control of a variety of physiological

variables, such as body temperature, potassium content, hormone

levels, as well as sleep [1,8,95,96]. As an example, potassium

homeostasis in our bodies is under a circadian control, where

potassium ion is daily excreted with peak values at the middle of

the day [1].

One of the questions still under discussion is how the circadian

period P is kept under homeostatic control as for example seen in

temperature compensation. In the antagonistic balance approach

[97] the variation of the period P with respect to temperature T ,

expressed as d ln P=d ln T , is given as the sum of the control

Figure 10. A homeostatic model of cytosolic Ca2z oscillations. The model considers a stimulated non-excitable cell under stationary
conditions using an extended version of outflow controller motif 6, where E is the controller molecule. Intermediate e has been included to get limit-
cycle oscillations. Rate constant k1 describes the total inflow of Ca2z from the ER and from the extracellular space into the cytosol and reflects the
strength of the stimulation. For the sake of simplicity the external Ca2z concentration (Ca2z

ext ) is considered to be constant (Ca2z
ext ~1:0). Ca2z

cyt

denotes cytosolic Ca2z and its concentration. (a) Reaction scheme. Rate equations: Ca2z
cyt ~k1{k2

:KI
:Ca2z

cyt =((KMzCa2z
cyt ):(KI zE));

_ee~k3{k4
:e:Ca2z

cyt =(Kset
M ze); _EE~k5

:e{k6
:E. Rate constants: k1 , variable; k2~500; k3~2:0; k4~1:0; Kset

M ~1:0|10{6 ; k5~k5~1:0; KI ~0:1. The

homeostat’s set-point for Ca2z
cyt is given by k3=k4~2:0. (b) Ca2z

cyt oscillations and average cytosolic Ca2z concentration, vCa2z
cyt wt, at different

stimulations and as a function of time t. Initial concentrations: Ca2z
cyt,0~1:772, e0~2:908|10{3 ; E0~1:643. The quenching of oscillations at low k1 is

due to an increased KM value. (c) Period length and average cytosolic Ca2+ concentration (vCa2z
cyt w) calculated after 2000 time units for different

stimulation strengths (k1 values). Same rate constants as in (b) with KM~0:01. Initial concentrations for each calculated data point:

Ca2z
cyt,0~6:126|10{2 , e0~30:693; E0~28:806.

doi:10.1371/journal.pone.0107766.g010
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coefficients [36] CP
ki
~L ln P=L ln k1 multiplied with the RT-

scaled activation energies Ei (R is the gas constant):

CP
T~

d ln P

d ln T
~
X

i

L ln P

L ln ki

� �
: L ln ki

L ln T

� �
~
X

i

CP
ki
: Ei

RT

� �
ð11Þ

The sum runs over all temperature-dependent processes i with rate

constants ki, where the temperature dependence of the rate

constants is expressed in terms of the Arrhenius equation

ki~Ai
: exp ({Ei=RT) [98]. Ai is the so-called pre-exponential

factor and can, to a first approximation, be treated as temperature-

independent. Eq. 11 applies to any kinetic model as long as the

temperature dependence of the individual reactions are formulat-

ed in terms of the Arrhenius law.

The condition for temperature compensation is obtained by

setting Eq. 11 to zero. Because in oscillatory systems the CP
ki

’s have

generally positive and negative values, there is a large set of

balancing Ei combinations which can lead to temperature

compensation. The various combinations can be considered to

arise by evolutionary selective processes acting on the activation

energies [99]. Because the temperature homeostasis of circadian

rhythms involves a compensatory mechanism [100], which needs

to be distinguished from temperature-independence where all

CP
ki

’s are zero, temperature compensation implies that there is a

certain set of non-zero control coefficients with associated

activation energies which (under ideal conditions) will satisfy the

balancing condition CP
T~0 within a certain temperature range.

The argument has been made that the balancing condition

CP
T~0 should be non-robust and should therefore not match the

many examples where mutations have no influence on the

circadian period [101]. However, it should be noted that Eq. 11

is model-independent and provides a general description how the

period of an oscillator will depend on temperature in terms of the

individual reactions defined by the ki’s. Robustness, on the other

hand, is a property of the actual oscillator model, where the

number of zero CP
ki

’s can be taken as a measure for robustness. For

the frequency controlled oscillators described earlier, there are

certain regions in parameter space such as the shaded region in

Fig. 7a, for which the oscillator’s period is independent towards

variations of those ki’s which lie within this region. As a result,

frequency controlled oscillators will show an increased robustness

against environmental factors that affect rate constants, such as

pH, salinity, or temperature [43,98] and therefore appear to be

candidates for modeling temperature compensation.

We feel that the here shown possibilities how robust concen-

tration and period homeostasis can be achieved provide a new

handle how the negative (and positive) feedback regulations in

circadian pacemakers [102] can be approached. The incorpora-

tion of these principles into models of circadian rhythms may

provide further insights how temperature compensation is

achieved and how circadian rhythms participate in the homeo-

static regulation of organisms [1,103].

Materials and Methods

Computations were performed by using Matlab/Simulink

(mathwork.com) and the Fortran subroutine LSODE [104]. Plots

were generated with gnuplot (www.gnuplot.info)/Matlab. To

make notations simpler, concentrations of compounds are denoted

by compound names without square brackets. All concentrations,

time units, and rate constants are given in arbitrary units (au).

Supporting Information

File S1 (with Figs. S1–S14 and Eqs. S1–S57), contains
derivation of the set-point under oscillatory conditions,
construction of the H-function in conservative systems,
the harmonic approximation of the frequency in con-
servative controllers, quenching of quasi-harmonic
oscillations, and an alternative example of I1=I2 feed-
back leading to robust frequency control in a motif 2
based limit-cycle oscillator.

(PDF)
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