Supplementary Material

Derivation of Eq. 1a. Assume J_{j} is a function of the rate constants for the N component reactions:

$$
\begin{equation*}
J_{j}=J_{j}\left(k_{l}, k_{2}, \ldots, k_{i}, \ldots, k_{N}\right) \tag{4}
\end{equation*}
$$

The derivative with respect to temperature T is calculated by using the chain rule:

$$
\begin{equation*}
\frac{d J_{j}}{d T}=\sum_{i}\left(\frac{\partial J_{j}}{\partial k_{i}}\right)\left(\frac{\partial k_{i}}{\partial T}\right) \tag{5}
\end{equation*}
$$

The last term in eq. 5 can be explicitly calculated from the Arrhenius equation, i.e.,

$$
\begin{equation*}
k_{i}=A_{i} e^{-\frac{E_{a}^{i}}{R T}} \quad \Rightarrow \quad \frac{\partial k_{i}}{\partial T}=\frac{E_{a}^{i}}{R T^{2}}\left(A_{i} e^{-\frac{E_{a}^{i}}{R T}}\right)=\frac{E_{a}^{i}}{R T^{2}} k_{i} \tag{6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{d J_{j}}{d T}=\sum_{i}\left(\frac{\partial J_{j}}{\partial k_{i}}\right) \frac{E_{a}^{i}}{R T^{2}} k_{i}=\sum_{i}\left(\frac{\partial J_{j}}{\partial \ln k_{i}}\right) \frac{E_{a}^{i}}{R T^{2}} \tag{7}
\end{equation*}
$$

by using $\partial k_{i} / k_{i}=\partial \ln k_{i}$. Multiplying eq. 7 by T / J_{j} and observing that $\mathrm{d} J_{j} / J_{j}=\mathrm{d} \ln J_{j}$, and $T / \mathrm{d} T=1 / \mathrm{d} \ln T$, Eq. 7 can be written as:

$$
\begin{equation*}
\frac{T}{J_{j}} \frac{\partial J_{j}}{\partial T}=\frac{d \ln J_{j}}{d \ln T}=\frac{1}{R T} \sum_{i}\left(\frac{\partial \ln J_{j}}{\partial \ln k_{i}}\right) E_{a}^{i}=\frac{1}{R T} \sum_{i}^{*} C_{i}^{J_{j}} E_{a}^{i} \tag{8}
\end{equation*}
$$

This shows that the activation enthalpy of a pathway flux is equal to the weighted average of the activation enthalpies of the steps, where the enthalpies are normalized by RT and the weighting factors are the flux control coefficients.

Derivation of Eq. 1b. Each reaction step is catalyzed by an enzyme and for the sake of simplicity we assume that each step can be described by Michaelis-Menten kinetics with non-saturating enzymes following first-order kinetics with respect to substrates, i.e.

$$
\begin{equation*}
J_{j}=J_{j}\left(\frac{k_{1} e_{1}}{K_{1}}, \frac{k_{2} e_{2}}{K_{2}}, \ldots, \frac{k_{i} e_{i}}{K_{i}}, \ldots \ldots, \frac{k_{N} e_{N}}{K_{N}}\right) \tag{9}
\end{equation*}
$$

where k_{i} is the turnover number, e_{i} the concentration of enzyme i, and K_{i} is a dissociation constant of a rapid equilibrium (or a dynamic equilibrium constant) between enzyme and substrates. Using the chain rule one obtains

$$
\begin{equation*}
\frac{d \ln J_{j}}{d T}=\frac{1}{J_{j}} \sum_{i}\left(\frac{\partial J_{j}}{\partial k_{i}}\right)\left(\frac{\partial k_{i}}{\partial T}\right)+\frac{1}{J_{j}} \sum_{m}\left(\frac{\partial J_{j}}{\partial e_{m}}\right)\left(\frac{\partial e_{m}}{\partial T}\right)+\frac{1}{J_{j}} \sum_{l}\left(\frac{\partial J_{j}}{\partial K_{l}}\right)\left(\frac{\partial K_{l}}{\partial T}\right) \tag{10}
\end{equation*}
$$

Because k_{i} and K_{l} have an Arrhenius-type temperature dependence [1,21], the first and the last terms in Eq. 10 can be written as (see Eqs. (6)-(8))

$$
\begin{equation*}
\frac{d \ln J_{j}}{d T}=\sum_{i} \frac{E_{a}^{k_{i}}}{R T^{2}}\left(\frac{\partial \ln J_{i}}{\partial \ln k_{i}}\right)+\frac{1}{J_{j}} \sum_{m} \frac{e_{m}}{e_{m}}\left(\frac{\partial J_{j}}{\partial e_{m}}\right)\left(\frac{\partial e_{m}}{\partial T}\right)+\sum_{l} \frac{E_{a}^{K_{i}}}{R T^{2}}\left(\frac{\partial \ln J_{j}}{\partial \ln K_{l}}\right) \tag{11}
\end{equation*}
$$

Because $\frac{e_{m}}{J_{j}} \frac{\partial J_{j}}{\partial e_{m}}=\frac{k_{m}}{J_{j}} \frac{\partial J_{j}}{\partial k_{m}}=\frac{\partial \ln J_{j}}{\partial \ln k_{m}}=C_{k_{m}}^{J_{j}}$ we can finally write

$$
\begin{equation*}
\frac{d \ln J_{j}}{d T}=\sum_{i} \frac{E_{a}^{k_{i}}}{R T^{2}} C_{k_{i}}^{J_{j}}+\frac{1}{J_{j}} \sum_{m} C_{k_{m}}^{J_{j}}\left(\frac{d \ln e_{m}}{d T}\right)+\sum_{l} \frac{E_{a}^{K_{i}}}{R T^{2}}\left(\frac{\partial \ln J_{j}}{\partial \ln K_{l}}\right) \tag{12}
\end{equation*}
$$

Multiplication with T and using the definition of the response coefficients $R_{T}^{e_{m}}=\frac{d \ln e_{m}}{d \ln T}, R_{K_{l}}^{J_{j}}=\frac{d \ln J_{j}}{d \ln K_{l}}$ yields Eq. 1b.

Reaction schemes where J ' cannot be temperature compensated (Fig. 2b)

Scheme (1). We consider the irreversible case, but the analysis can easily be applied to the reversible situation. The rate equations at steady state conditions are:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-k_{2}[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \tag{13}\\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \\
& \frac{d[D]}{d t}=k_{4}[C]-J^{\prime}=0
\end{align*}
$$

Summing up the four equations leads to $J^{\prime}=k_{1}$ showing that $C_{1}=1$, while the other control coefficients are zero.

Scheme (2). We are looking at the irreversible clockwise loop. The rate equations at steady state conditions are:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}+k_{5}[D]-k_{2}[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \tag{14}\\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \\
& \frac{d[D]}{d t}=k_{4}[C]-J^{\prime}-k_{5}[D]=0
\end{align*}
$$

Summing up the four equations leads to $J^{\prime}=k_{1}$ showing that $C_{1}=1$, while the other control coefficients are zero.

Scheme (3). Although this scheme contains a branch point, flux $J^{\prime}=k_{I}$ showing that $C_{1}=1$, while the other control coefficients are zero.

Scheme (4). Reaction species D inhibits process 2 by replacing k_{2} by $\frac{k_{2}}{K_{I}+[D]^{m}}$.

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-\frac{k_{2}[A]}{K_{I}+[D]^{m}}=0 \\
& \frac{d[B]}{d t}=\frac{k_{2}[A]}{K_{I}+[D]^{m}}-k_{3}[B]=0 \tag{15}\\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \\
& \frac{d[D]}{d t}=k_{4}[C]-J^{\prime}=0
\end{align*}
$$

The sum of the four equations leads to $J^{\prime}=k_{1}$ showing that $C_{1}=1$, while the other control coefficients are zero.

Scheme (5). Like in scheme (4), the contributions of the (positive) feedback loop cancel and flux $J^{\prime}=k_{1}$ leading to $C_{1}=1$ and the other $C_{i}^{\prime} s=0$.

Scheme (6). We consider a negative feedforward to the output flux J '. The rate equations read:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-k_{2}[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \tag{16}\\
& \frac{d[D]}{d t}=k_{4}[C]-\frac{k^{\prime}}{K_{I}+[B]^{m}}[D]=0
\end{align*}
$$

The steady state output flux J^{\prime} is given by:

$$
\begin{equation*}
J^{\prime}=\frac{k^{\prime}}{K_{I}+[B]_{S S}^{m}}[D]_{S S}=k_{1} \tag{17}
\end{equation*}
$$

showing that $C_{1}=1$, while the other control coefficients are zero.

Scheme (7). Reaction species A activates reaction 4 (positive feedforward).

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-k_{2}[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \tag{18}\\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4} k[A]^{n}[C]=0 \\
& \frac{d[D]}{d t}=k_{4} k[A]^{n}[C]-J^{\prime}=0
\end{align*}
$$

The sum of the four equations leads to $J^{\prime}=k_{1}$ showing that $C_{1}=1$, while the other control coefficients are zero. The same result we get for the activation of reaction 4 by B or the activation of reaction 3 by A.

The rate equations of a positive feedforward from B to an output flux read:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-k_{2}[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \tag{19}\\
& \frac{d[D]}{d t}=k_{4}[C]-k^{\prime} k[B]^{n}[D]=0
\end{align*}
$$

The steady state output flux J^{\prime} is given by:

$$
\begin{equation*}
J^{\prime}=k^{\prime} k[B]_{S S}^{n}[D]_{S S}=k_{1} \tag{20}
\end{equation*}
$$

leading to $C_{1}=1$, while the other control coefficients are zero.

Reaction schemes where J ' can be temperature compensated (Fig. 2c)

Scheme (8). Calculating the steady state values:

$$
\begin{array}{ll}
\frac{d[A]}{d t}=k_{1}-k_{2}[A]=0 & \Rightarrow[A]_{S S}=\frac{k_{1}}{k_{2}} \\
\frac{d[B]}{d t}=k_{2}[A]-\left(k_{3}+k_{4}\right)[B]=0 & \Rightarrow[B]_{S S}=\frac{k_{1}}{k_{3}+k_{4}} \tag{21}\\
\frac{d[C]}{d t}=k_{3}[C]-k_{5}[C]=0 & \Rightarrow[C]_{S S}=\frac{k_{3}}{k_{5}}[B]_{S S} \\
\frac{d[D]}{d t}=k_{4}[B]-J^{\prime}=0 & \Rightarrow[D]_{S S}=\frac{k_{4}}{k^{\prime}}[B]_{S S}=\frac{k_{1} k_{4}}{k^{\prime}\left(k_{3}+k_{4}\right)}
\end{array}
$$

Because $J^{\prime}=k^{\prime}[D]_{\mathrm{SS}}$, we get $J^{\prime}=\frac{k_{1} k_{4}}{k_{3}+k_{4}}$. We can write $C_{3}=\frac{\partial \ln J^{\prime}}{\partial \ln k_{3}}=\frac{k_{3}}{J^{\prime}} \cdot \frac{\partial J^{\prime}}{\partial k_{3}}=-\frac{k_{3}}{k_{3}+k_{4}}$ and $C_{4}=\frac{\partial \ln J^{\prime}}{\partial \ln k_{4}}=\frac{k 4}{J^{\prime}} \cdot \frac{\partial J^{\prime}}{\partial k_{4}}=+\frac{k_{3}}{k_{3}+k_{4}}$ showing that $C_{3}=-C_{4}$. Likevise it can be shown that $C_{1}=1$.

Scheme (9).

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-\left(k_{2}+k_{6}\right)[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-\left(k_{3}+k_{7}\right)[B]=0 \tag{22}\\
& \frac{d[C]}{d t}=k_{3}[B]-\left(k_{4}+k_{8}\right)[C]=0 \\
& \frac{d[D]}{d t}=k_{4}[C]-\left(k^{\prime}+k_{9}\right)[D]=0
\end{align*}
$$

By successive elimination of the steady state values for A, B, C, and D in the equations, we get:

$$
\begin{equation*}
J^{\prime}=k^{\prime}[D]_{S S}=k^{\prime} \frac{k_{1} k_{2} k_{3} k_{4}}{\left(k_{2}+k_{6}\right)\left(k_{3}+k_{7}\right)\left(k_{4}+k_{8}\right)\left(k^{\prime}+k_{9}\right)} \tag{23}
\end{equation*}
$$

Calculating the C_{i} 's, one get that $C_{1}=1$ and

$$
C_{2}=-C_{6}=\frac{k_{6}}{k_{2}+k_{6}} ; C_{3}=-C_{7}=\frac{k_{7}}{k_{3}+k_{7}} ; C_{4}=-C_{8}=\frac{k_{8}}{k_{4}+k_{8}} ; C^{\prime}=-C_{9}=\frac{k_{9}}{k^{\prime}+k_{9}} . \text { In order }
$$ to temperature compensate fluxes J_{6}, J_{7}, J_{8} and J ' simultaneously, vi observe that when compensating first J_{6}, this flux depends only on k_{1}, k_{2} and k_{6} with $C_{1}^{J_{6}}=1$ and

$C_{2}^{J_{6}}=-C_{6}^{J_{6}}=-\frac{k_{2}}{k_{2}+k_{6}}$ while all the other control coefficients are zero. This leads to the balance equation

$$
\begin{equation*}
E_{1}+C_{2}^{J_{6}}\left(E_{2}-E_{6}\right)=0 \tag{24}
\end{equation*}
$$

which determines the values of E_{1}, E_{2} and E_{6}. The condition to temperature compensate J_{7} is:

$$
\begin{equation*}
E_{1}+C_{2}^{J_{7}}\left(E_{2}-E_{6}\right)+C_{3}^{J_{7}}\left(E_{3}-E_{7}\right)=0 \tag{25}
\end{equation*}
$$

Because $C_{2}^{J_{6}}$ is generally different from $C_{2}^{J_{7}}$, the sum $E_{1}+C_{2}^{J_{7}}\left(E_{2}-E_{6}\right)$ in Eq. 20 need not to be zero, but E_{3} and E_{7} can be chosen such that Eq. 20 is satisfied. In this way J_{6}, J_{7} and J_{8} and J^{\prime} can be simultaneously temperature compensated when solving the balance equations 19-22.

$$
\begin{gather*}
E_{1}+C_{2}^{J_{8}}\left(E_{2}-E_{6}\right)+C_{3}^{J_{8}}\left(E_{3}-E_{7}\right)+C_{4}^{J_{8}}\left(E_{4}-E_{8}\right)=0 \tag{26}\\
E_{1}+C_{2}^{J^{\prime}}\left(E_{2}-E_{6}\right)+C_{3}^{J^{\prime}}\left(E_{3}-E_{7}\right)+C_{4}^{J^{\prime}}\left(E_{4}-E_{8}\right)+C^{J^{\prime}}\left(E^{\prime}-E_{9}\right)=0 \tag{27}
\end{gather*}
$$

Scheme 10. The rate equations of this cyclic scheme with steady state conditions read:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1}-k_{2}[A]+k_{5}[D]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-\left(k_{3}+k_{6}\right)[B]=0 \\
& \frac{d[C]}{d t}=k_{3}[B]-\left(k_{4}+k_{7}\right)[C]=0 \tag{28}\\
& \frac{d[D]}{d t}=k_{4}[C]-\left(k^{\prime}+k_{5}\right)[D]=0
\end{align*}
$$

By successively eliminating the steady state values $[A]_{\mathrm{SS}},[B]_{\mathrm{SS}}$ and $[C]_{\mathrm{SS}}$, an expression for $[D]_{\text {SS }}$ and J ' can be obtained:

$$
\begin{equation*}
J^{\prime}=k^{\prime} \frac{k_{1} k_{3} k_{4}}{N} \tag{29}
\end{equation*}
$$

where $N=k^{\prime} k_{6} k_{7}+k^{\prime} k_{4} k_{6}+k^{\prime} k_{3} k_{7}+k^{\prime} k_{3} k_{4}+k_{5} k_{6} k_{7}+k_{4} k_{5} k_{6}+k_{3} k_{5} k_{7}$. Calculating the control coefficients as $C_{i}=\frac{k_{i}}{J^{\prime}}\left(\frac{\partial J^{\prime}}{\partial k_{i}}\right)$, we get:
$C_{1}=1, C_{2}=0, C_{3}=\frac{k_{6}\left(k^{\prime} k_{7}+k^{\prime} k_{4}+k_{5} k_{7}+k_{5} k_{4}\right)}{N}, C_{4}=\frac{k_{7}\left(k^{\prime} k_{6}+k^{\prime} k_{3}+k_{5} k_{6}+k_{5} k_{3}\right)}{N}$,
$C_{5}=-\frac{k_{5}\left(k_{6} k_{7}+k_{6} k_{4}+k_{3} k_{7}\right)}{N}, C_{6}=-C_{3}, C_{7}=-C_{4}, C^{\prime}=-C_{5}$ with $\sum_{i=1}^{7} C_{i}+C^{\prime}=1$.

Scheme (11). Inhibition of J_{1} by any intermediate. Vi take as an example the inhibition of J_{1} by C with Hill coefficient $m=1$. The rate equations with steady state conditions are:

$$
\begin{align*}
& \frac{d[A]}{d t}=\frac{k_{1}}{K_{I}+[C]^{1}}-k_{2}[A]=0 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \tag{30}\\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \\
& \frac{d[D]}{d t}=k_{4}[C]-k^{\prime}[D]=0
\end{align*}
$$

leading to $J^{\prime}=k^{\prime}[D]_{S S}=\frac{k_{1}}{K_{I}+[C]_{S S}}$. Eliminating the variables A and B and determining the positive solution of the steady state value of C :

$$
\begin{equation*}
[C]_{S S}=\frac{-k_{4} K_{I}+\sqrt{\left(k_{4} K_{I}\right)^{2}+4 k_{1} k_{4}}}{2 k_{4}} \tag{31}
\end{equation*}
$$

J ' can be expressed as:

$$
\begin{equation*}
J^{\prime}=\frac{2 k_{1} k_{4}}{k_{4} K_{I}+\sqrt{k_{4} M}} ; \quad M=\left(k_{4} K_{I}^{2}+4 k_{1}\right) \tag{32}
\end{equation*}
$$

Calculating the control coefficients as $C_{i}=\frac{k_{i}}{J^{\prime}}\left(\frac{\partial J^{\prime}}{\partial k_{i}}\right)$, we get:
$C_{1}=\frac{k_{4}\left(K_{I} \sqrt{k_{4} M}+k_{4} K_{I}^{2}+2 k_{1}\right)}{\left(k_{4} K_{I}+\sqrt{k_{4} M}\right) \cdot \sqrt{k_{4} M}}, C_{4}=\frac{2 k_{1} k_{4}}{\left(k_{4} K_{I}+\sqrt{k_{4} M}\right) \cdot \sqrt{k_{4} M}}, C_{K_{I}}=-\frac{k_{4} K_{I}}{\left(k_{4} K_{I}+\sqrt{k_{4} M}\right)} ;$
$C_{2}=C_{3}=C^{\prime}=0$. Note, temperature compensation is only possible because the inhibitor constant K_{I} (which can be interpreted as a dissociation constant in rapid equilibrium between the enzyme that catalyzes step l and the inhibitor C) is assumed to be temperature dependent. The temperature dependence of K_{I} can be described analogously to the Arrhenius equation by substituting the activation enthalpy with the enthalpy of formation ΔH_{I}^{0}. In this case the pre-exponential factor A_{I} can still be treated as temperature independent with $A_{I}=\exp \left(-\Delta S_{I}^{0} / R\right)$ [1]. It should also be noted that when treating K_{I} as a temperature dependent parameter, then the sum of the control coefficients is generally not one. In this case we get:

$$
\begin{equation*}
\sum_{i=1}^{4} C_{i}+C_{K_{I}}+C^{\prime}=\frac{4 k_{1} k_{4}}{\left(k_{4} K_{I}+\sqrt{k_{4} M}\right) \sqrt{k_{4} M}} \tag{33}
\end{equation*}
$$

Scheme (12). Activation of J_{l} by any intermediate. In order to avoid an exponential increase of concentrations, n needs to be lower than 1 . As an example, we look at the activation of reaction l by intermediate C. The rate equations with steady state conditions are:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{1} k[C]^{n}-k_{2}[A]=0, \quad 0<n<1 \\
& \frac{d[B]}{d t}=k_{2}[A]-k_{3}[B]=0 \tag{34}\\
& \frac{d[C]}{d t}=k_{3}[B]-k_{4}[C]=0 \\
& \frac{d[D]}{d t}=k_{4}[C]-k^{\prime}[D]=0
\end{align*}
$$

Summing up all steady state equations leads to

$$
\begin{equation*}
J^{\prime}=k^{\prime}[D]_{S S}=k_{1} k[C]_{S S}^{n} \tag{35}
\end{equation*}
$$

When adding only the first three equations, we get $k_{1} k[C]_{S S}^{n}-k_{4}[C]_{S S}=0$. Solving for $[C]_{S S}$ from the last equation and multiplying $[C]_{S S}$ with k_{4}, we get:

$$
\begin{equation*}
J^{\prime}=k_{3}\left(\frac{k_{1} k}{k_{3}}\right)^{-\frac{1}{n-1}} \tag{36}
\end{equation*}
$$

Calculating the control coefficients as $C_{i}=\frac{k_{i}}{J^{\prime}}\left(\frac{\partial J^{\prime}}{\partial k_{i}}\right)$, we get: $C_{1}=C_{k}=-\frac{1}{n-1}$, $C_{3}=\frac{n}{n-1}$, while all other C_{i} are zero. The sum $\sum_{i=1}^{4} C_{i}+C^{\prime}+C_{k}=\frac{n-2}{n-1}$ shows that in case of a feedback activation of an input flux using $\mathrm{n}<1$ the summation theorem is not obeyed.

A Simple Representation of the Calvin Benson Cycle

Fig. 5c shows a simple representation of the Calvin Benson cycle with its 3 stages: (i) the reduction phase (flux J_{2}) due to influx of ATP and NADPH produced by the light reaction together with the output flux of P_{i}, (ii) the regeneration phase (flux J_{3}) with the output flux J_{6} forming carbohydrates, and (iii) the ATP/NADPH-driven carboxylation phase (flux $J_{4}^{\mathrm{CO}_{2}}$) assimilating CO_{2} [32]. The rate constant $k_{4}^{\mathrm{CO}_{2}}$ is assumed to be dependent on the partial but constant CO_{2} pressure.

The rate equations and steady state conditions are given by the following equations:

$$
\begin{align*}
& \frac{d[A]}{d t}=k_{3}[C]-\left(k_{4}^{C O_{2}}+k_{6}\right)[A]=0 \\
& \frac{d[B]}{d t}=k_{4}^{C O_{2}}[A]+k_{1}-k_{2}[B]=0 \tag{37}\\
& \frac{d[C]}{d t}=k_{2}[B]-\left(k_{3}+k_{5}\right)[C]=0
\end{align*}
$$

Eliminating variables C and B and calculating $J_{4}^{C O_{2}}=k_{4}^{\mathrm{CO}_{2}}[A]_{S S}$ leads to

$$
\begin{equation*}
J_{4}^{C O_{2}}=\frac{k_{4}^{C O_{2}} k_{1} k_{3}}{L}, L=k_{5} k_{4}^{C O_{2}}+k_{5} k_{6}+k_{3} k_{6} \tag{38}
\end{equation*}
$$

The control coefficients are $C_{1}=1, C_{2}=0, C_{3}=-C_{5}=\frac{k_{5}\left(k_{4}+k_{6}\right)}{L}$, and $C_{4}=-C_{6}=\frac{k_{6}\left(k_{5}+k_{3}\right)}{L}$. The assimilation of CO_{2} can be temperature compensated because of the "balance" between the input and output fluxes.

