
Splice Site Prediction Using Artificial Neural

Networks

Øystein Johansen, Tom Ryen, Trygve Eftesøl, Thomas Kjosmoen,
and Peter Ruoff

University of Stavanger, Norway

Abstract. A system for utilizing an artificial neural network to predict
splice sites in genes has been studied. The neural network uses a sliding
window of nucleotides over a gene and predicts possible splice sites. Based
on the neural network output, the exact location of the splice site is found
using a curve fitting of a parabolic function. The splice site location is
predicted without prior knowledge of any sensor signals, like ’GT’ or
’GC’ for the donor splice sites, or ’AG’ for the acceptor splice sites. The
neural network has been trained using backpropagation on a set of 16965
genes of the model plant Arabidopsis thaliana. The performance is then
measured using a completely distinct gene set of 5000 genes, and verified
at a set of 20 genes. The best measured performance on the verification
data set of 20 genes, gives a sensitivity of 0.891, a specificity of 0.816 and
a correlation coefficient of 0.552.

1 Introduction

Gene prediction has become more and more important as the DNA of more
organisms are sequenced. DNA sequences submitted to databases are often al-
ready characterized and mapped when they are submitted. This means that a
molecular biologist has already used genetics and biochemical methods to find
genes, promoters, exons and other meaningful subsequences in the submitted
material. However, the number of sequencing projects are increasing, and a lot
of DNA sequences have not yet been mapped or characterized. Having a com-
putational tool to predict genes and other meaningful subsequences is therefore
of great value, and can save a lot of expensive and time consuming experiments
for biologists.

This study tries to utilize an artificial neural network to predict where the
splice sites of a gene can be located. The splice sites are the transitions from
exon to intron or from intron to exon. A transition from exon to intron is
called a donor splice site and a transition from intron to exon is called acceptor
splice site.

2 Neural Network

The main premise in this study is to use a window of nucleotides that moves
stepwise over the sequence to be analysed. The inputs to the neural network
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are calculated from the input calculator. For each step of the sliding window the
neural network will give an output score if it recognizes there is a splice site in
the window. A diagram of the entire prediction system is shown in Fig. 2. The
window size is chosen to be 60 nucleotides. This is hopefully wide enough to find
significant patterns on both sides of the splice site. A bigger window will make
the neural network bigger and thereby harder to train. Smaller window would
maybe exclude important information around the splice site.

Fig. 1.The connection between theDNAsequence and theneural network system.A slid-
ing window covers 60 nucleotides, which is calculated to 240 input units to the neural net-
work.Theneural network feedforward calculates a score for donor and acceptor splice site.

2.1 Network Topology

The neural network structure is a standard three layer feedforward neural net-
work.1 There are two output units corresponding to the donor and acceptor
splice sites, 128 hidden layer units and 240 input units. The 240 input units
were used since the orthogonal input scheme uses four inputs each nucleotide
in the window. The neural network program code was reused from a previous
study, and in this code the number of hidden units was hard coded and op-
timized for 128 hidden units. There is also a bias signal added to the hidden
layer and the output layer. The total number of adjustable weights is therefore
(240 × 128) + (128 × 2) + 128 + 2 = 31106.
1 This kind of neural network has several names, such as multilayer perceptrons

(MLP), feed forward neural network, and backpropagation neural network.
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2.2 Activation Function

The activation function is a standard sigmoid function, shown in Eq. 1. The β
values for the sigmoid functions are 0.1 for both the hidden layer activation and
the output layer activation. Preliminary experiments were performed to test the
effect of these values. These tests indicated that 0.1 was a suitable value.

f(x) =
1

1 + e−βx
(1)

When doing forward calculations and backpropagation, the sigmoid function
is called repetitively. It is therefore important that this function has a high com-
putational performance. A fast and effective evaluation of the sigmoid function
can improve the overall performance considerably. To improve the performance
of the sigmoid function, a precalculated table for the exponential function is
used. This table lookup method is known to be very fast, and with an accept-
able accuracy.

2.3 Backpropagation

The neural network was trained using a normal backpropagation method as
described in Duda, Hart, Stork [3], Haykin [4] or Kartalopoulos [6]. There is no
momentum used in the training. We have not implemented any second order
methods to help the convergence of the weights.

3 Training Data and Benchmarking Data

Based on data from the The Arabidopsis Information Resource (TAIR) release 8
website [8], we compiled a certain set of genes.TAIR is an on-line database resource
of genetic and molecular biology data of the model plant Arabidopsis thaliana.

3.1 Excluded Genes

All genes that contain unknown nucleotides were excluded from the data set. In
addition, all single exon genes were excluded. Further, all genes with very short
exons or introns were excluded. By ”short” we mean 30 nucleotides or less. These
genes were excluded to avoid very short exons or very short introns. Excluding
these genes also simplifies the calculation of desired outputs, since it then can not
be more than two splice sites in a window. For genes with alternative splicing,
only one splicing variation was kept.

3.2 Training Data Set and Benchmark Data Set

The remaining data set, after exclusion of some genes, consists of 21985 genes.
This set is divided into a training data set and a benchmarking data set. The
training set and the benchmark set have 16965 and 5000 genes, respectively. The
remaining 20 genes, four from each chromosome, was kept for a final verifica-
tion. The number of genes in each set is chosen such that the benchmark set is
large enough to achieve a reliable performance measure of the neural network.
This splitting was done at random. Both data sets contains genes from all five
chromosomes.
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4 Training Method

The neural network training is done using standard backpropagation. This sec-
tion describes how the neural network inputs were calculated and how the desired
output was obtained.

4.1 Sliding Window

For each gene in the training set, we let a window slide over the nucleotides.
The window moves one nucleotide each step, covering a total of LG − LW + 1
steps, where LG is the length of the gene and LW is the length of the window.
As mentioned earlier, the length of the window is 60 nucleotides in this study.

4.2 Input to the Neural Network

For each nucleotide in the sliding window, we have four inputs to the neural
net. The four inputs are represented as an orthogonal binary vector. (A=1000,
T=0100, G=0010, C=0001). This input description has been used in several
other studies [5], and is described in Baldi and Brunak [1]. This input system is
called orthogonal input, due to the orthogonal binary vectors. According to Baldi
and Brunak [1] this is the most used input representation for neural networks
in the application of gene prediction. This input scheme also has the advantage
that each nucleotide input is separated from each other, such that no arithmetic
correlation between the monomers need to be constructed.

4.3 Desired Output and Scoring Function

The task is to predict splice sites, thus the desired output is 1.0 when a splice site
is in the middle of the sliding window. There are two outputs from the neural
network: One for indicating acceptor splice site and one for indicating donor
splice site.

However, if it is only a 1.0 output when a splice site is in the middle of the
window, and 0.0 when a splice site is not in the middle of the window, there
will probably be too many 0.0 training samples that the neural network would
learn to predict everything as ’no splice site’. This is why we introduce a score
function which calculates a target output not only when the splice site is in
the middle of the window, but whenever there is a splice site somewhere in the
window. We use a weighting function where the weight of a splice site depends
on the distance from the respective nucleotide to the nucleotide at the window
mid-point. The further from the mid point of the window this splice site is, the
lower value we get in the target values. The target values decrease linearly from
the mid point of the window. This gives the score function as shown in Eq. 2

f(n) = 1 − |1 − 2n

LW
| (2)

If a splice site is exactly at the mid point, the target output is 1.0. An example
window is shown in Fig. 2.
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Fig. 2. Score function to calculate the desired output of a sliding window. The example
window in the figure has a splice site after 21 nucleotides. This makes the desired output
for the acceptor splice site 0.7.

In some cases there may be two splice sites in a window. It is then one acceptor
splice site and one donor splice site.

4.4 Algorithm for Training on One Single Gene

The algorithm for training on a single gene is very simple. The program loops
through all the possible window positions. For each position, the program com-
putes the desired output for the current window, computes the neural net input
and then calls Backpropagation() with these computed data. See Algorithm 1.

Algorithm 1. Training the neural net on one single gene
1: procedure TrainGene(NN,G, η) � Train the network on gene G
2: n← length[G]− LW

3: for i← 0 to n do
4: W ← G[i..(i + LW )] � Slice the gene sequence
5: desired← CalculateDesired(W )
6: input← CalculateInput(W )
7: Backpropagation(NN, input, desired, η)
8: end for
9: end procedure

In this algorithm, NN is a composite data structure that holds the neural
network data to be trained. G is one specific gene that the neural network should
be trained on. The first integer variable n is simply the total number of positions
of the sliding window. LW is the number of nucleotides in the sliding window,
which in this study, is set to 60 nucleotides.

The desired output is calculated as described in Section 4.3, and is listed in
Algorithm 2.
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Algorithm 2. Calculating the desired output based on a given window
1: function CalculateDesired(W ) � Calculate desired output
2: D← [0.0, 0.0] � Initialize the return array
3: prev← IsExon(W [0]) � Boolean value
4: if prev then
5: j ← 0
6: else
7: j ← 1
8: end if
9: for i← 1 to LW do

10: this← IsExon(W [i])
11: if prev �= this then
12: D[j]← D[j] + 1− |1− i

30
| � Score function

13: j ← 1− j � Flip the index 0 to 1, 1 to 0
14: end if
15: prev← this
16: end for
17: return D
18: end function

5 Evaluation Method

The evaluation of a gene is simply the forward calculation performed for all the
window positions in that gene. The neural network outputs are accumulated as
an indicator value for each nucleotide in the gene.

5.1 Sliding Window

Because the neural network is trained to recognize splice sites in a 60 nucleotides
wide window, the forward calculation process is also performed on the same sized
window. The window slides over the gene in the same way as in the training
procedure.

5.2 Cumulative Output and Normalization

As the sliding window moves over the gene and forward calculates whenever
there is a splice site in the window. A nucleotide gets a score contribution from
from 60 outputs corresponding to the sliding window passing over it. All these
outputs are accumulated.

The accumulated output is then normalized. Most of the nucleotides will
get a contribution from 60 different window positions, and these nucleotides
are normalized by dividing the cumulative output by the area under the score
function (30.0). These normalized cumulative scores are called acceptor splice
site indicator and donor splice site indicator.



108 Ø. Johansen et al.

5.3 Algorithm for Evaluating One Single Gene

The pseudo code of the evaluation of a gene is given in Algorithm 3. The algo-
rithm contains two loops. The first loop a slides a window over all positions in
the gene and adds up all the predictions from the neural network. The second
loop normalizes the splice site indicators.

Algorithm 3. Evaluation of gene
function EvaluateGene(NN, G) � Calculate splice site indicators
in: Neural network (NN), Gene (G)
out: Two arrays, D and A, which contains the donor and acceptor splice site indi-
cator.

n← length[G]− LW

for i← 0 to n do
W ← G[i..(i + LW )] � Slice the gene sequence
input← CalculateInput(W )
pred← Evaluate(NN, input) � Gets predicted output
for j ← i to LW + i do

D[j]← D[j] + pred[0]
A[j]← A[j] + pred[1]

end for
end for
for i← 0 to length[G] −1 do � Normalizing loop

D[i]← 2D[i]/LW

A[i]← 2A[i]/LW

end for
return D, A

end function

The normalizing loop in the implemented code also takes into account that
the nucleotides close to the ends of the gene gradually gets evaluated by less
window positions.

6 Measurement of Performance (Benchmark)

For monitoring the learning process and knowing when it is reasonable to stop
the training, it is important to have a measurement of how well the neural
network performs. This measurement process is also called benchmarking.

6.1 Predicting Splice Sites

As mentioned earlier the transition from exon to intron is called a donor splice
site. The algorithm for predicting exons and introns in the gene is more or less
done as a finite state machine with two states – exon state and intron state. The
gene sequence starts in exon state. The algorithm then searches for the first high
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value in the donor splice site indicator. When the algorithm finds a significant
top in the donor splice site indicator, the state switches to intron. The algorithm
continues to look for a significant top in the acceptor splice site indicator, and
the state is switched back to exon. This process continues until the end of the
gene. The gene must end in the exon state.

In the above paragraph, it is unclear what is meant by a significant top. To
indicate a top in a splice site indicator, the algorithm first finds a indicator value
above some threshold value. It then finds all successive indicator data points that
are higher than this threshold value. Through all these values, a second order
polynomial regression line is fitted, and the maximum of this parabola is used
to indicate the splice site. This method is explained with some example data in
Fig. 3. In this example the indicator value at 0 and 1 is below the threshold. The
value at 2 is just above the threshold and the successive values at 3,4,5 and 6 is
also above the threshold and these five values are used in the curve fitting. The
rest of the data points are below the threshold and not used in the curve fitting.

Fig. 3. Predicting a splice site based on the splice site indicator. When the indicator
reaches above the threshold value, 0.2 in the figure, all successive data points above
this threshold are used in a curve fitting of a parabola. The nucleotide closest to the
parabola maxima is used the splice site.

Finding a good threshold value is difficult. Several values have been tried. We
have performed some simple experiments with dynamically computed threshold
values based on average and standard deviation. However, the most practical
threshold value was found to be a constant at 0.2.

6.2 Performance Measurements

The above method is used to predict the locations of the exons and introns.
These locations can be compared with the actual exon and intron locations.
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There are four different outcomes of this comparison, true positive (TP ), false
negative (FN), false positive (FP ) and true negative (TN). The comparison of
actual and predicted location is done at nucleotide level.

The count of each comparison outcome are used to compute standard mea-
surement indicators to benchmark the performance of the predictor. The sensi-
tivity, specificity and correlation coefficient has been the de facto standard way
of measuring the performance of prediction tools. These prediction measurement
values are defined by Burset and Guigó [2] and by Snyder and Stormo [7].

The sensitivity (Sn) is defined as the ratio of correctly predicted exon nu-
cleotides to all actual exon nucleotides as given in Eq. 3.

Sn =
TP

TP + FN
(3)

The higher the ratio, the better prediction. As we can see, this ratio is between
0.0 and 1.0, where 1.0 is the best possible.

The specificity (Sp) is defined as the ratio of correctly predicted exon nu-
cleotides to all predicted exon nucleotides as given in Eq. 4.

Sp =
TP

TP + FP
(4)

The higher the ratio, the better prediction. As we can see, this ratio is between
0.0 and 1.0, where 1.0 is the best possible.

The correlation coefficient (CC) combines all the four possible outcomes into
one value. The correlation coefficient is defined as given in Eq. 5.

CC =
(TP × TN)− (FN × FP )

√
(TP + FN)(TN + FP )(TP + FP )(TN + FN)

(5)

6.3 The Overall Training Algorithm

The main loop of the training is very simple and is an infinite loop with two
significant activities. First, the infinite loop trains the neural network on all genes
in the training data set. Second, it benchmarks the same neural network on the
genes in the benchmark data set. There are also some other minor activities
in the main loop like reshuffling the order of the training data set, saving the
neural network, and logging the results. The main training loop is shown in
Algorithm 4.

In this algorithm, NN is the neural net to be trained, T is the data set of
genes to be used for training and B is the data set of genes for benchmarking.
In this algorithm the learning rate, η, is kept constant. The bm variable is a
composite data structure to hold the benchmarking data.

The subroutine Save() saves the neural network weights, and the Shuffle()

subroutine reorders the genes in the data set. LogResult() logs the result to
the terminal window and to a log file.
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Algorithm 4. Main training loop
1: procedure Train(NN, T, B, η) � Train the neural network
2: repeat
3: for all g ∈ T do � Train neural net on each gene in dataset
4: TrainGene(NN,g, η)
5: end for
6: Save(NN)
7: Shuffle(T ) � A new random order of the training set
8: for all g ∈ B do
9: Benchmark(NN, g, bm)

10: end for
11: LogResult(bm)
12: until break � Manually break when no improvement observed
13: end procedure

7 Experiments and Results

The training data set of 16965 genes where then used to train a neural network.
The training was done in three sessions, and for each session we chose separate,
but constant, learning rates. The learning rate, η, was chosen to be 0.2, 0.1,
and 0.02, respectively. For each epoch2 through the training data set, the neural
networks performance was measured with the benchmark data set.

7.1 Finding Splice Sites in a Particular Gene

The splice site indicators can be plotted for a single gene. To illustrate our
results, we present an arbitrarily chosen gene, AT4G18370.1. The curves in Fig. 4
represent the donor and acceptor splice site indicators for an entire gene. The
donor splice sites are marked using a red line, the acceptor splice sites using
a green line, and the predicted and actual exons are marked with the upper
and lower dashed lines, respectively. The shown indicators are computed using
a neural network which has been trained for about 80 epochs, with a learning
rate of 0.2. As noted in the header of Fig. 4, the prediction on this gene achieves
a better than average CC of 0.835. The results are promising. Most splice sites
match the actual data, and some of the errors are most likely due to the low-pass
filtering effect of using a sliding window, causing ambiguous splice sites.

7.2 Measurements of the Best Neural Networks

The best performing neural network, achieved a correlation coefficient of 0.552.
The correlation coefficients, as well as the sensitivity, specificity, and standard
simple matching coefficient (SMC), are shown in Tab. 1. When calculating these
performance measurements, the benchmark algorithm averages the sensitivities
and specificities for all genes in the data set. In addition the specificity, sensitiv-
ity, and correlation coefficient for the entire dataset is reported.
2 An epoch is one run through the data set of training data.
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Fig. 4. The splice site indicators plotted along an arbitrary gene (AT4G18370.1) form
the verification set. Above the splice site indicators, there are two line indicators where
the upper line indicates predicted exons, and the other line indicates actual exons.
The sensitivity, specificity and correlation coefficient of this gene is given in the figure
heading. (Err is an error rate defined as the ratio of false predicted nucleotides to all
nucleotides. Err = 1− SMC.)

Table 1. Measurements of the neural network performances for each of the three
training sessions. Numbers are based on a set of 20 genes which are not found in the
training set nor the benchmarking set.

Average All nucleotides in set
Session Sn Sp Sn Sp CC SMC

η = 0.20 0.864 0.801 0.844 0.802 0.5205 0.7761
η = 0.10 0.891 0.816 0.872 0.806 0.5517 0.7916
η = 0.02 0.888 0.778 0.873 0.777 0.4978 0.7680

8 Conclusion

This study shows an artificial neural networks used in splice site prediction. The
best neural network trained in this study, achieve a correlation coefficient at
0.552. This result is achieved without any prior knowledge of any sensor signals,
like ’GT’ or ’GC’ for the donor splice sites, or ’AG’ for the acceptor splice sites.
Also note that some of the genes in the data sets did not store the base case
for splicing, but an alternative splicing, which may have disturbed some of the
training. It is fair to conclude that artificial neural networks are usable in gene
prediction, and the method used, with a sliding window over the gene, is worth
further study. This method combined with other statistical methods, like General
Hidden Markov Models, would probably improve the results further.
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