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’ INTRODUCTION

Methods such as general and biological systems theory,1�3

biochemical systems theory,4,5 and metabolic control analysis
and its extensions6�16 provide important tools in the analysis of
complex oscillatory or nonoscillatory reaction systems.17�20

We became interested in how adaptation processes in reaction
kinetic networks can be characterized and identified by using
both metabolic control analysis and methods from control
engineering.21�26 For example, a condition for robust (rate
parameter independent) perfect adaptation for a certain network
site requires that the respective sensitivity coefficient between an
input (for example, a changed rate constant) and an output (for
example, a concentration) becomes zero. Using methods from
control engineering, a sufficient condition for robust perfect
adaptation can be formulated, which requires that the transfer
function between input and output has a zero in origo indepen-
dently of rate constant values.26 Moreover, if the transfer func-
tion has a zero in origo only for a given combination of rate
constants or activation energies, the output still shows perfect
adaptation, but since the adaptation behavior depends on certain
parameter values, this situation is “nonrobust”. A question which
repeatedly occurred to us was how control coefficients in
particular, or sensitivity coefficients in general, may be related

to transfer functions. In this work, we describe the relationship
between sensitivity coefficients and their corresponding transfer
functions from a general kinetic (state space) perspective, i.e.,
considering an open system model with independent rate con-
stant parameters or temperature as input and species concentra-
tions or fluxes as output. Ingalls15 analyzed the relationship
between response/control coefficients and transfer functions
on the basis of stoichiometric network presentation.9 However,
as we show in the Supporting Information, Ingalls’ results may
differ from the input/output state space formulation, because in
the stoichiometric network formulation perturbations are not
applied to individual rate constants but to reaction velocities and
their linear combinations. The formulation of control coefficients
by using stoichiometric networks15 is dependent on the choice of
model output, e.g., whether the outputs are concentrations or
fluxes, and no formulation has been provided for how other
inputs than reactions rates, for example temperature, can be
included in the analysis.
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ABSTRACT:Metabolic control analysis (MCA) and biochemical systems
theory (BST) have become established methods when analyzing the
behavior/kinetics of biochemical reaction systems. While the usage of
MCA and BST involves the determination of sensitivities, e.g., steady state
control coefficients (CCs), typically between reaction rates and concentra-
tions/fluxes, transfer functions (TFs) from control engineering allow to
analyze the connectivity between arbitrary input signals (e.g., rate constants
or temperature) and arbitrary output signals (e.g., concentrations or fluxes)
in the complex-valued s- or frequency domain. As CCs generally do not
provide information about the connectivity between input and output signals, we became interested in the question of howCCs and
TFs, or more generally, how arbitrary sensitivity coefficients (SCs) and TFs are related to each other. In this work, we describe a
general relationship between SCs and their corresponding TFs from a general kinetic (state space) approach and show that the state
space approach can describe the SC-TF relationship by a single equation. During our work, we became aware of an alternative
method which relates CCs and TFs by using a stoichiometric network approach. In this work, we describe a procedure to identify
conditions to determine whether a receptor-mediated input to a reaction kinetic network can show robust (perturbation
independent) or nonrobust (balanced or perturbation dependent) adaptive or homeostatic behavior in an output. Compared to
the stoichiometric network approach, the here described method allows for dealing with arbitrary (including empirically identified)
kinetic expressions.

http://pubs.acs.org/action/showImage?doi=10.1021/jp200578e&iName=master.img-000.jpg&w=199&h=82
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’COMPUTATIONAL METHODS

The symbolic equations were analyzed by using MATLAB
(www.mathworks.com) and MAPLE (www.maplesoft.com) as
described in ref 27.

’RESULTS

Transfer Functions of Reaction Kinetic Networks. State
Space Modeling Approach. Consider a reaction kinetic network
with M chemical components I1,...,IM with concentrations x1,...,
xM(t) and N reactions steps associated with a rate constant, i.e.
k1(t),...,kN(t). The kinetics will generally be of first or second
order, but empirical kinetics can also be considered. The network
can be perturbed by changing one of the rate constants kn(t),
n∈{1,...,N} by means of, for example, a step function or any other
time-dependent signal. Such a perturbation may occur due to an
signal coming from a receptor acting specifically on kn(t). The
network can also be stimulated by temperature changes by
assuming that each rate constant depends on temperature using
the Arrhenius equation, i.e., kn(t) = An 3 e

(�En)/(RT(t)).
In this work, we use un(t) as a general notation for a time varying

input signal and for a vector of inputs we use u(t) = [u1(t),...,uN(t)].
Further, we use the symbol r for the L-dimensional vector of
parameters and x(t) = [x1(t),...,xM(t)] for a vector of state variables,
i.e., concentrations. The kinetics of the network are described by the
rate equations for each chemical component as follows:

dxðtÞ
dt

¼ fðxðtÞ, uðtÞ,rÞ ð1Þ

where f is a vector of nonlinear functions f = [f1, ..., fM]
T. From

this model we define a P-dimensional vector of model outputs
y(t) = [y1(t),...,yP(t)]

T as follows:

yðtÞ ¼ gðxðtÞ, uðtÞ,rÞ ð2Þ
where g is a vector of nonlinear functions g = [g1, ..., gP]

T. These
model outputs are properties of the network we want to investigate,
for example concentrations, fluxes, or other network properties
which depend on concentrations and/or rate constants.
In order to find the transfer function matrixH(s) from the vector

of inputs to the vector of outputs, eqs 1 and 2 are first linearized
around a working point, i.e., the unperturbed steady state values
of uss = [u1, ..., uN], xss = [x1, ..., xM] and yss = [y1, ..., yP] (note
the independence of time t of the vector elements to indicate
steady state values). This gives the following linear state space
model:

Δ_x·ðtÞ ¼ A 3ΔxðtÞ þ B 3ΔuðtÞ ð3Þ

ΔyðtÞ ¼ C 3ΔxðtÞ þD 3ΔuðtÞ ð4Þ
whereΔu(t) = [Δu1(t), ...,ΔuN(t)]

T,Δx(t) = [Δx1(t), ...,ΔxM(t)]
T

and Δy(t) = [Δy1(t), ..., ΔyP(t)]
T are vectors of small deviations

around uss, xss and yss, respectively. The (M� M) state matrix A is
defined byAij = (∂fi)/(∂xj)|ss, the (M�N) input matrix B is defined
byBij= (∂fi)/(∂uj)|ss, the (P�M) outputmatrixC is defined byCij=
(∂gi)/(∂xj)|ss, and the (P � N) direct transmission matrix D is
defined by Dij = (∂gi)/(∂uj)|ss. The names of the matrices are
terminology from control engineering.28

Laplace transforming the linearized model in eqs 3 and 4, gives
the (P � N) transfer function matrix H(s) as follows:21

HðsÞ ¼ CðsI � AÞ�1BþD ð5Þ

where I is the (M � M) identity matrix. H(s) describes the
relationship between a small change in all possible inputs, i.e. the
array of Laplace transformed inputs Δu(s) = [Δu1(s),...,
ΔuN(s)]

T, and the resulting changes in all possible outputs, i.e.
Δy(s) = [Δy1(s),...,ΔyP(s)]

T. Note that we use the same symbol
for both time- and Laplace domain signals. The element of the
transfer function matrix in eq 5 corresponding to the relationship
between an arbitrary input un(t), n∈{1,...,N} and an arbitrary
output yp(t), p∈{1,...,P} is in general given as follows:

Hyp, unðsÞ ¼ ΔypðsÞ
ΔunðsÞ ¼

K 3
Qm
r¼ 1

� 1
zr
sþ 1

� �
Qk
q¼ 1

� 1
pq

sþ 1

 ! ð6Þ

where zr are defined as the transfer function’s zeros, pq are the
poles, K is the DC-gain, m is the number of zeros and k is the
number of poles.28

System Identification Approach. In control engineering, the
field of system identification uses statistical methods to build
empirical mathematical models of dynamical systems from
measured data. System identification also includes the optimal
design of experiments for efficiently generating informative data for
fitting such models.29 One reason for doing system identification is
that modeling from first principles may prove difficult in that the
regulatory processes may be poorly understood. As such, most
identified models are “black-box models” which only describe the
observed input-output relationshipwithout any knowledge about the
state variables. These black-box models may be represented as state
space models, transfer functions (with and without time-delays),
nonlinear models, spectral models, correlations models, and more.29

Wewill not go into detail about system identificationmethods,
but only point out that a (more or less accurate) transfer function
Hyp,un(s) or transfer function matrixH(s) can be estimated from a
set of measured input/output data. These transfer functions are
therefore similar to eqs 5 and 6, respectively, applicable to the
relationship which is described in the next section.
The Relationship between Transfer Functions and Rela-

tive Sensitivity Coefficients. An absolute or unscaled sensitivity
coefficient is the partial derivative of a variable (for example
flux Ji) with respect to variations in a parameter value (for
example rate constant kj) as (∂Ji)/(∂kj), whereas the relative or
scaled sensitivity coefficient is defined as follows:30

DJi
Dkj 3

kj
Ji
¼ Dln Ji

Dln kj
¼ CJi

kj ð7Þ

Two of the most frequently employed relative sensitivity
coefficients from MCA are the concentration and flux control
coefficients, describing the (steady state) relative sensitivity
between the reaction rate v and concentration or flux,
respectively.4,6,8,10,11,31

When considering a kinetic network as described by eqs 1 and
2, the relative sensitivity coefficient between an arbitrary input
un(t), n∈{1,...,N} and an arbitrary output yp(t), p∈{1,...,P}
becomes:

Cyp
un ¼ Dln yp

Dln un
¼ Dyp

Dun 3
un
yp

ð8Þ

The corresponding transfer function for the un-yp input-output
system is given by eq 6. In general, a transfer function is
defined for a sinusoidal input of arbitrary frequency, whereas
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absolute/relative sensitivity/control coefficients are defined for
(frequency independent) stepwise input perturbations.
In order to identify the relationship between a frequency

independent (steady state) relative sensitivity coefficient Cun
yp

(eq 8) and a corresponding frequency dependent transfer function
Hyp,un(s) (eq 6), we first note from eq 6 that as the frequency of
the sinusoidal input goes to zero, i.e., s = jw = 0, we get an
expression for the steady state gain as Hyp,un(0) = K. In general,
the same steady state gain K is also obtained as the amplification
of a small stepwise input signal Δun around the steady state
value un,ss, resulting in an output change Δyp around yp,ss, i.e.,
K = (Δyp)/(Δun). This is shown in Figure 1 for the single-input
single-output (SISO) system of motif M1 where the input is
temperature un(t) = T(t), and the output is flux yp(t) = J6(t). See
section Illustrating the Principles below and Supporting Infor-
mation for details about the simulation.
Since Δun can be an infinite small step around the working

point un,ss, the relationship (Δyp)/(Δun) can be interpreted as
the absolute sensitivity coefficient (∂yp)/(∂un) and thereby:

Cyp
un ¼ Hyp, unð0Þ 3

un, ss
yp, ss

ð9Þ

Note that this expression is general and applies to either flux or
concentration sensitivities depending on the definition of input
un(t) and output yp(t). From the input/output relationship in
Figure 1, the steady state relative sensitivity coefficient, i.e.,
Cun
yp = CT

J6, is straightforward to estimate as follows:

Cyp
un ¼ Hyp, unð0Þ 3

un, ss
yp, ss

¼ Δyp
Δun 3

un, ss
yp, ss

� ð0:57179� 0:571615Þ
ð318� 308Þ 3

308
0:571615

¼ 0:0943 ð10Þ

The determination of Hyp,un(0) in eq 10 is actually a very
simple form of system identification.
Generalizing the results in eq 9 for a multiple input multiple

output (MIMO) system, gives the following relative sensitivity

matrix as (using element-wise multiplication, or so-called Hada-
mard matrix multiplication o32):

Cy
u ¼ Dln yss

Dln uss
¼

Dln y1
Dln u1

Dln y1
Dln u2

:::
Dln y1
Dln uN

Dln y2
Dln u1

Dln y2
Dln u2

:::
Dln y2
Dln uN

l l l l
Dln yP
Dln u1

Dln yP
Dln u2

:::
Dln yP
Dln uN

2
66666666664

3
77777777775

¼

Dy1
Du1

Dy1
Du2

:::
Dy1
DuN

Dy2
Du1

Dy2
Du2

:::
Dy2
DuN

l l l l
DyP
Du1

DyP
Du2

:::
DyP
DuN

2
666666664

3
777777775
o

u1, ss
y1, ss

u2, ss
y1, ss

:::
uN, ss
y1, ss

u1, ss
y2, ss

u2, ss
y2, ss

:::
uN
y2, ss

l l l l
u1, ss
yP, ss

u2, ss
yP, ss

:::
uN, ss
yP, ss

2
666666664

3
777777775

¼ Dyss
Duss

o
uss
yss

ð11Þ
Similarly, as for the SISO case in eq 9, we identify the

(∂yss)/(∂uss) matrix in eq 11 as the steady state gain matrix
H(0), giving the following relationship between the (steady
state) relative sensitivity coefficient matrix and the transfer
function matrix:

Cy
u ¼ Hð0Þouss

yss
ð12Þ

This relationship also holds for the frequency domain, with
s = jω and where ω is the frequency

Cy
uðsÞ ¼ HðsÞouss

yss
ð13Þ

and where the steady state sensitivity coefficient matrix in eq 12
becomes a special case of eq 13. Hence, the connectivity that we
stated to exist only in the transfer functions, actually exists in the
frequency dependent relative sensitivity coefficients as well. It
should also be emphasized that the dimensions of the two
matricesCu

y(s) andH(s) are the same, making it easy to compare

Figure 1. Example of how simulation results (or experimental results) can be used to empirically estimate the transfer function DC-gain H(0) = K =
(Δyp)/(Δun) and thereby the steady state relative sensitivity coefficient Cun

yp.

http://pubs.acs.org/action/showImage?doi=10.1021/jp200578e&iName=master.img-001.png&w=332&h=228
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them element-wise. Comparing eq 7 and eq 9 indicates that the
transfer function is actually the absolute or unscaled sensitivity
coefficient.
Stoichiometric Network Approach. A frequency domain

approach to sensitivity analysis was formulated by Ingalls15

based on stoichiometric network theory.9 This approach is
described in more detail in the Supporting Information to-
gether with a comparison with the state space approach
described above.
Conditions for Different Adaptation Types. It was pre-

viously stated26 that a zero control coefficient (in a steady state
relative control coefficient matrix) is only a necessary but not
sufficient condition for robust (rate parameter independent)
perfect adaption. This result is generally true for any steady state
sensitivity coefficient since a zero valued element does not carry
information about the connectivity or adaptive behavior between
input and output. However, the connectivity information is
provided by the transfer function H(s), or the frequency depen-
dent scaled sensitivity coefficient Cu

y(s). Before we analyze the
connectivity information, note that a transfer function element as
in eq 6 can be rewritten as the relationship between two
polynomials:

Hyp, unðsÞ ¼ bmsm þ bm�1sm� 1 þ :::þ b0
sk þ ak�1sk � 1 þ :::þ a0

ð14Þ

where the parameters b0, ..., bm will generally be functions of
the input vector uss and parameter vector r as bj = hj(uss,r)
" j∈{0,...,m}. From eq 13, we calculate Cun

yp(s), which can be
formulated as the relationship between a numerator poly-
nomial nun

yp(s) and a denominator polynomial dun
yp(s) as

follows:

Cyp
un
ðsÞ ¼ Hyp, unðsÞ 3

un, ss
yp, ss

¼ n
yp
unðsÞ
d
yp
unðsÞ

ð15Þ

The numerator polynomial nun
yp(s) of eq 15 can generally be

written as follows:

nypunðsÞ ¼ qðuss,rÞ 3 ∑
m

j¼ 0
hjðuss,rÞsj ð16Þ

where q(uss,r) comes from the term (un,ss)/(yp,ss).
On the basis of Cun

yp(s) and nun
yp(s), the following scenarios

describe the conditions for an output yp (e.g., flux or concen-
tration) to be either (1) robustly disconnected, (2) nonrobustly
disconnected, (3) robust perfectly adapted, (4) nonrobust per-
fectly adapted, or (5) near nonrobust perfectly adapted, to changes
in an input un (e.g., rate constant or temperature):
1 The output yp is robustly disconnected from the input un if the
following condition is fulfilled:
(a) Cun

yp(s)�0
The corresponding element of the steady state relative
sensitivity coefficient matrix Cun

yp will always be zero.
2 The output yp is nonrobustly disconnected to changes in input
un if all the following conditions are fulfilled ($ means there
exists,: means such that, " means for all):
(a) Cun

yp(s) �= 0
(b) $ (uss,r):q(uss,r) = 0
(c) $ j∈{0,...,m}:hj(uss,r) 6¼ 0 " (uss,r)

This means that there is actually a connection between
the input and output (since one or more of the
functions hj(uss,r) 6¼ 0), but this connectivity

information is hidden when q(uss,r) = 0 for a certain
combination of uss and r. The corresponding element
of the steady state relative sensitivity coefficient matrix
Cun
yp can in general be either zero or nonzero, depending

the numerical values of uss and r.
3 The output yp is robust perfectly adapted to changes in input
un if all of the following conditions are fulfilled:
(a) Cun

yp(s) �= 0
(b) $ j∈{1,...,m}:q(uss,r) 3 hj(uss,r) 6¼ 0 " (uss,r)
(c) h0(uss,r) = 0 " (uss,r)

This means that there will be a zero in origo since
h0(uss,r) = 0 regardless of the numerical values of uss
and r. The corresponding element of the steady state
relative sensitivity coefficient matrix Cun

ypwill therefore
always be zero.

4 The output yp is nonrobust perfectly adapted to changes in
input un if conditions (3a), (3b) and the following condition
are fulfilled:
(c) $ (uss,r):h0(uss,r) = 0 " un

This means that there exists a solution to h0(uss,r) = 0
only for a certain combination of uss and r and that
the solution is independent of the actual input un.
The corresponding element of the steady state relative
sensitivity coefficient matrix Cun

yp can in general be
either zero or nonzero, depending the numerical values
of uss andr. This is in the literature sometimes referred
to as balancing.33

5 The output yp is near nonrobust, perfectly adapted to changes
in input un (referred to as static compensation in ref 33) if
conditions (3a), (3b) and the following condition are
fulfilled:
(c) $ (uss,r):h0(uss,r) = 0

This implies that there exists a solution to h0(uss,r) = 0
only for a certain combination of uss and r and that
the solution is dependent on the actual input un. The
corresponding element of the steady state relative
sensitivity coefficient matrix Cun

yp can in general
be either zero or nonzero, depending the numerical
values of uss and r.

These scenarios are applicable to both the state space and the
stoichiometric network approaches. As mentioned in context
with motifs M2 and M3 in the Supporting Information, if reactions
rates are lumped in the modeling, as is often done in the stoichio-
metric network approach,15 the dimensions of the control coefficient
matrices will differ from the relative sensitivity coefficients from the
state space approach, and hence, the results from the two methods
with respect to various kinds of adaptation sites are not comparable.

’ ILLUSTRATING THE PRINCIPLES

We will use three different motifs (one here and two in the
Supporting Information) to illustrate the conditions described in
the previous chapter for the different kinds of adaptation. We will use
superscript 1�5 to indicate which matrix element is robustly discon-
nected (scenario 1), nonrobustly disconnected (scenario 2), robust
perfectly adapted (scenario 3), nonrobust perfectly adapted (scenario 4)
or near nonrobust perfectly adapted (scenario 5), respectively.
Motif M1. Motif M1 shown below is used to find the relative

sensitivity coefficients between temperature as input and fluxes
or concentrations as outputs, and we show how to identify near
nonrobust perfect adaptation (i.e., temperature compensation)
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sites.14,33�35 We do not identify the corresponding control
coefficients used in MCA.

The input to the model is the scalar temperature u(t) = T(t)
and the output from the model is the fluxes
y(t) = [k1(t), k2(t)x1(t), k3(t)x2(t), k4(t)x2(t), k5(t)x3(t),

k6(t)x4(t)]
T. The dynamic model of this motif is given in the

Supporting Information.
In ref 33, it was shown that this network actually exhibits near

nonrobust perfect adaptation (termed static temperature com-
pensation in ref 33) in flux J6 for a certain combination of
activation energies. In this work, we find the same result from
analyzing the numerator polynomials of Cu

y(s).
As an example, consider nu1

y3(s) where uss = T and r = [A1, ...,
A6, E1, ..., E6, R], the following functions are found:

qðuss,RÞ ¼ 1 ð17Þ

h2ðuss,RÞ ¼ E3 ð18Þ

h1ðuss,RÞ ¼ A2e
�E2=RTE3 þ A3e

�E3=RTE2 þ A4e
�E4=RTðE2 þ E3 � E4Þ

ð19Þ

h0ðuss,RÞ ¼ A2e
�E2=RTðA3e

�E3=RTE1 þ A4e
�E4=RTðE1 þ E3 � E4ÞÞ ð20Þ

As can be seen, conditions (3a) and (3b) are fulfilled, whereas
(3c) is not. Proceeding to scenario 4, we also see that condition

(4c) cannot be fulfilled. However, condition (5c) can be fulfilled
since the function h0(uss,r) is dependent on the actual input
u1 = T and a solution to h0(uss,r) = 0 exists for a certain tem-
perature T and certain parameters r.
The complete steady state relative sensitivity coefficient matrix

Cu
y is shown in eq 21.

Cy
u ¼

E1
RT
E1
RT

E1
RT

þ A4e�E4=RTðE3 � E4Þ
RTðA3e�E3=RT þ A4e�E4=RTÞ

5

E1
RT

� A3e�E3=RTðE3 � E4Þ
RTðA3e�E3=RT þ A4e�E4=RTÞ

5

E1
RT

þ A4e�E4=RTðE3 � E4Þ
RTðA3e�E3=RT þ A4e�E4=RTÞ

5

E1
RT

� A3e�E3=RTðE3 � E4Þ
RTðA3e�E3=RT þ A4e�E4=RTÞ

5

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

ð21Þ

Since both elements Cu
y(3,1) and Cu

y(5,1) are equal, the condi-
tion for near nonrobust perfect adaptation in J3 and J5 is found from
condition (5c) where a solution to h0(uss,r) = 0 can be found:

A3e
�E3=RTE1 þ A4e

�E4=RTðE1 þ E3 � E4Þ ¼ 0 ð22Þ
Similarly, since both elementsCu

y(4,1) andCu
y(6,1) are also equal,

the condition for near nonrobust perfect adaptation in J4 and J6 is:

A4e
�E4=RTE1 þ A3e

�E3=RTðE1 þ E3 � E4Þ ¼ 0 ð23Þ
What we in this work term near nonrobust perfect adaptation

is actually either partial, nonrobust, or overadaptation as de-
scribed in ref 26, where the actual response depends on the
preperturbation steady state value of the input. This is shown in

Figure 2. Near nonrobust perfect adaptation behavior. The parameters values are r = [A1, ..., A6, E1, ..., E6, R], where the vector of activation constants
are [A1, ..., A6] = [1.72,0.10,0.52,1.51,1.40,0.70], activation energies [E1, ..., E6] = [24.5, 34, 120, 22, 98, 12] and R = 8.314. Note that these values are not
identical to the ones in ref 33 as there are many possible combinations. The temperature is uss = T = 298 K. (a) Temperature dependence of the relative
sensitivity coefficient matrix elementCu

y(4,1) from temperature to flux J4. (b) Partial, nonrobust, and overadaptation in flux J4 as a function of a stepwise
perturbation of 10 K at t = 20 au in the input, when the preperturbation value of the temperature is 273, 293, or 313 K, respectively. The peak value of the
fluxes J4 after the step is approximately 1.25755 (data not shown). The step response for T = 293 K shows nonrobust perfect adaptation since the step
goes from 5 K below the balancing temperature of T = 298 K, to 5 K above this temperature.

http://pubs.acs.org/action/showImage?doi=10.1021/jp200578e&iName=master.img-002.png&w=240&h=59
http://pubs.acs.org/action/showImage?doi=10.1021/jp200578e&iName=master.img-003.png&w=331&h=215
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Figure 2a) where the relative sensitivity coefficient matrix
element Cu

y(4,1) is plotted as a function of temperature T. The
responses in Figure 2b) are examples of partial, nonrobust and
overadaptation in flux J4 as a function of a stepwise perturbation
of 10 K at t = 20 au in the input, when the preperturbation value
of the temperature is 273, 293, or 313 K, respectively.
As already mentioned, the SISO-system response in Figure 1 is

based on a simulation (shown in Supporting Information) of the
nonlinear model of motif M1 for a stepwise increase in tempera-
ture of 10 K from 308 to 318 K. The corresponding analytical
values of Cu

y (eq 21) are calculated to be as follows:

Cy
u ¼

0:02616
0:02616
0:04806
0:00975
0:04806
0:00975

2
6666666664

3
7777777775

ð24Þ

Recall from eq 10 that the empirical steady state relative
sensitivity coefficient from temperature un(t) = T(t) to flux
yp(t) = J6(t) was estimated to Cun

yp ≈ 0.00943. The difference
between this empirical value and the analytical value of element
(6,1) in eq 24 is due to the relative large step of 10 K temperature
increase in Figure 1. A smaller stepwise increase in temperature
will reduce the difference, and this actually demonstrates the
nonlinearity of the system.

’DISCUSSION

We have shown that the transfer function matrixH(s) and the
frequency dependent relative sensitivity coefficient matrix Cu

y(s)
both provide connectivity information between inputs and out-
puts in reaction kinetic networks. This information is lacking in
steady state relative sensitivity coefficient matrixCu

y in general and
in control coefficients in particular. Moreover, we have shown
that the transfer function is the same as the absolute or unscaled
sensitivity coefficient.

From the numerator polynomial of the relative sensitivity
matrix Cu

y(s) we have identified five scenarios describing condi-
tions to determine whether a receptor-mediated input to a
reaction kinetic network can show robust (perturbation in-
dependent) or nonrobust (balanced or perturbation dependent)
adaptive or homeostatic behavior in an output.

We have also shown (Supporting Information) that care
should be taken when lumping reversible reactions together
(as in the Stoichiometric Network Approach), as the indepen-
dence of two rate constants is reduced to one, and may therefore
not reflect the actual independence of such rate constants.

The state space approach presented here has the advantage
that it describes the relationship between transfer functions and
the corresponding relative sensitivity coefficients by a single
equation independent of the choice of inputs and outputs. This
makes an automated flux and concentration analysis of network
perturbations straightforward.

’ASSOCIATED CONTENT

bS Supporting Information. The Supporting Information
contains derivations of the transfer function matrices and relative

sensitivity coefficients for motif M1,M2, andM3. This material is
available free of charge via the Internet at http://pubs.acs.org.
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