Supplementary Material

Simulating dark expressions and interactions of *frq* and *wc-1* in the *Neurospora* circadian clock

Christian I. Hong^{1,2,4}, Ingunn W. Jolma^{1,4}, Jennifer J. Loros³, Jay C. Dunlap^{2,3} and Peter Ruoff^{1,*}

¹ Department of Mathematics and Natural Science, University of Stavanger, N-4036 Stavanger, Norway, and Departments of ² Genetics and ³Biochemistry, Dartmouth Medical School, Hanover NH 03755.

⁴ These authors contributed equally to this work.

* Corresponding author. University of Stavanger, Faculty of Science and Technology,

Department of Mathematics and Natural Science, N-4036 Stavanger, Norway.

Tel.: +47 51831887; Fax: +47 51831750; E-mail: peter.ruoff@uis.no

Rate equations of alternative $WC-1_n$ inhibitions

Rate equations for the mechanism shown in Fig. 1B:

$$\frac{d[frq \ mRNA]}{dt} = k_1 \frac{[WC - 1_n]^2}{K + [WC - 1_n]^2} - k_4 [frq \ mRNA] + k_{01}$$
(S1a)

$$\frac{d[FRQ_c]}{dt} = k_2[frq \ mRNA] - (k_3 + k_5)[FRQ_c]$$
(S1b)

$$\frac{d[FRQ_n]}{dt} = k_3[FRQ_c] + (k_{17} + k_{18})[FRQ_n : WC - 1_n] - [FRQ_n](k_6 + k_{16}[WC - 1_n])$$
(S1c)

$$\frac{d[wc - 1 \ mRNA]}{dt} = k_7 - k_{10}[wc - 1 \ mRNA]$$
(S1d)

$$\frac{d[WC - 1_c]}{dt} = \frac{k_8[FRQ_c][wc - 1 \ mRNA]}{K_2 + [FRQ_c]} - (k_9 + k_{11})[WC - 1_c]$$
(S1e)

 $+k_{02}[wc-1 mRNA]$

$$\frac{d[WC - 1_n]}{dt} = k_9[WC - 1_c] - [WC - 1_n](k_{12} + k_{16}[FRQ_n]) + k_{17}[FRQ_n : WC - 1_n]$$
(S1f)

$$\frac{d[FRQ_n: WC - 1_n]}{dt} = k_{16}[FRQ_n][WC - 1_n] - (k_{17} + k_{18} + k_{20})[FRQ_n: WC - 1_n]$$
(S1g)

$$\frac{d[WC - 1_n^*]}{dt} = k_{18}[FRQ_n : WC - 1_n] - k_{19}[WC - 1_n^*]$$
(S1h)

Rate equations for the mechanism shown in Fig. 1C:

$$\frac{d[frq \ mRNA]}{dt} = k_1 \frac{[WC - 1_n]^2}{K + [WC - 1_n]^2} - k_4 [frq \ mRNA] + k_{01}$$
(S2a)

$$\frac{d[FRQ_c]}{dt} = k_2[frq \ mRNA] - (k_3 + k_5)[FRQ_c]$$
(S2b)

$$\frac{d[FRQ_n]}{dt} = k_3[FRQ_c] + k_{17}[FRQ_n : WC - 1_n] - [FRQ_n](k_6 + k_{16}[WC - 1_n])$$
(S2c)

$$\frac{d[wc - 1 \ mRNA]}{dt} = k_7 - k_{10}[wc - 1 \ mRNA]$$
(S2d)

$$\frac{d[WC - 1_c]}{dt} = \frac{k_8[FRQ_c][wc - 1 \ mRNA]}{K_2 + [FRQ_c]} - (k_9 + k_{11})[WC - 1_c]$$
(S2e)

$$+k_{02}[wc - 1 mRNA]$$

$$\frac{d[WC - 1_n]}{dt} = k_9[WC - 1_c] - [WC - 1_n](k_{12} + k_{16}[FRQ_n]) + k_{17}[FRQ_n : WC - 1_n]$$
(S2f)

$$\frac{d[FRQ_n:WC-1_n]}{dt} = k_{16}[FRQ_n][WC-1_n] - (k_{17} + k_{18} + k_{20})[FRQ_n:WC-1_n]$$
(S2g)

$$\frac{d[WC - 1_n^*]}{dt} = k_{18}[FRQ_n : WC - 1_n] - k_{19}[WC - 1_n^*]$$
(S2h)

$$\frac{d[FRQ_n^*]}{dt} = k_{18}[FRQ_n : WC - 1_n] - k_{21}[FRQ_n^*]$$
(S2i)

Figure S1. Predicted inverse variation relationship between total FRQ and total WC-1 rates. Maximum changes in FRQ concentration correspond to minimum changes in WC-1 and *vice versa*. Oscillations of FRQ_{tot} and WC-1_{tot} from Fig. 2A are shown where phases with maximum FRQ_{tot} variations are highlighted as grayed boxes.

Figure S2. Total FRQ and WC-1 levels as a function of the *wc-1* transcription rate k_7 in the oscillatory domain shown in Fig. 3C (A) $k_7=0.1$ a.u, (B) $k_7=0.25$ a.u, (C) $k_7=0.35$ a.u, (D) $k_7=0.5$ a.u.

Figure S3. Modeling a 4h QA pulse in the inducible frq^{10} (*qa*-2FRQ) strain (compare with Fig. 2D in Ref 6. Same parameter sets as for frq^+ calculations (Table 1), but $k_1=0$, $k_{01}=0.02$ a.u.h⁻¹, and $k_{02}=0.001$ a.u. h⁻¹. Initial concentrations: [frq mRNA]=4.3E-06 a.u., [FRQ_c]=2.44E-05 a.u., [FRQ_n]=3.14E-07 a.u., [wc-1 mRNA]=1.67 a.u., [$WC-1_c$]= 4.24E-05 a.u., [$WC-1_n$]=8.58E-02 a.u., [FRQ_n: $WC-1_n$]=1.50E-07 a.u.

Figure S4. (A) Temperature variation of *K* modeling ER24 behavior. (B) Curved Arrhenius plot leading to the period-temperature relationship shown in Fig. 4B (open squares). (C) Temperature variation of *K* modeling frq^+ behavior. (D) Curved Arrhenius plot leading to the frq^+ temperature compensation shown in Fig. 4B (open circles). (E) Temperature variation of k_5 used in the frq^+ and ER24 calculations. (F) Curved Arrhenius plot for k_5 used in frq^+ and ER24 calculations.

Figure S5. Total FRQ and WC-1 levels for 25°C parametrizations of (A) frq^1 , (B) frq^+ , (C) frq^7 , and (D) frq^{S513I} , respectively.

Hong et al.: Simulating dark expressions... Fig. S1

Hong et al.: Simulating dark expressions..... Fig. S2

Hong et al.: Simulating dark expressions.... Fig. S3

Hong et al.: Simulating dark expressions.... Fig. S4

Hong et al.: Simulating dark expressions.... Fig. S5