Supporting Information (10 pages)

Predicting perfect adaptation motifs in reaction kinetic networks

Tormod Drengstig ${ }^{1}$, Hiroki R. Ueda ${ }^{2}$ and Peter Ruoff ${ }^{3, *}$

${ }^{1}$ Department of Electrical Engineering and Computer Science, University of Stavanger, N-4036 Stavanger, Norway; ${ }^{2}$ Center for Developmental Biology, RIKEN, Kobe, Japan;
${ }^{3}$ Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway

Derivation of the Transfer function $H_{B, k_{2}}(s)$ for motif S1, Eq. 5
Consider motif S1 (main paper):

$$
\begin{equation*}
\underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~A} \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftarrows}} \mathrm{~B} \underset{k_{-3}}{\stackrel{k_{3}}{\rightleftarrows}} \tag{S1}
\end{equation*}
$$

with the rate equations:

$$
\begin{align*}
& \frac{d A(t)}{d t}=\dot{A}(t)=k_{1}(t)-k_{2}(t) A(t)+k_{-2}(t) B(t)-k_{-1}(t) A(t) \tag{A1}\\
& \frac{d B(t)}{d t}=\dot{B}(t)=k_{2}(t) A(t)-k_{3}(t) B(t)-k_{-2}(t) B(t)+k_{-3}(t) \tag{A2}
\end{align*}
$$

and the rate constants $k_{1}(t), k_{2}(t), k_{3}(t), k_{-1}(t), k_{-2}(t)$ and $k_{-3}(t)$.
The steady state concentrations $A_{s s}$ and $B_{s s}$ are given by Eq. A3 and no perfect adaptation can exist, because both $A_{s s}$ and $B_{s s}$ depend on all rate constants such that for all k_{i} we have nonzero control coefficients, i.e., $C_{k_{i}}^{A_{s s}} \neq 0$ and $C_{k_{i}}^{B_{s s}} \neq 0$.

$$
\begin{equation*}
A_{s s}=\frac{k_{-2}\left(k_{-3}+k_{1}\right)+k_{1} k_{3}}{k_{3}\left(k_{-1}+k_{2}\right)+k_{-1} k_{-2}} ; B_{s s}=\frac{k_{-3}\left(k_{-1}+k_{2}\right)+k_{1} k_{2}}{k_{3}\left(k_{-1}+k_{2}\right)+k_{-1} k_{-2}} \tag{A3}
\end{equation*}
$$

However, by introducing an irreversible input to the system (as indicated in the main paper), for example by setting $k_{-1}=0$, robust perfect adaptation in $B(t)$ with respect
to a step-wise change in k_{2} (or k_{-2}) can be observed. The reason for this is that $B(t)$ is now independent of k_{2} or k_{-2}, because $B_{s s}=\frac{k_{1}+k_{-3}}{k_{3}}$. However, $B(t)$ is still connected to k_{2} and k_{-2} as can be seen by inspecting the transfer function $H_{B, k_{2}}(s)$ for the entire scheme S1, Eq. 5 (see below).
$A_{s s}$, however, still depends on the remaining rate constants and therefore shows no perfect adaptation. Introducing irreversibility in scheme S1 by setting $k_{-2}=0$ or/and $k_{-3}=0$, will not lead to perfect adaptation for neither A nor B, because also in these cases $A_{s s}$ and $B_{s s}$ still depend on all the other rate constants.

In order to find the transfer function matrix $H(s)$, the system is linearized around the steady states values $A_{s s}$ and $B_{s s}$, and the rate constants $k_{1}, k_{2}, k_{3}, k_{-1}, k_{-2}$ and k_{-3}, which gives the following linear model

$$
\begin{align*}
\Delta \dot{A}(t)= & -\left(k_{2}+k_{-1}\right) \Delta A(t)+k_{-2} \Delta B(t) \\
& +\Delta k_{1}(t)-A_{s s} \Delta k_{2}(t)-A_{s s} \Delta k_{-1}(t)+B_{s s} \Delta k_{-2}(t) \tag{A4}\\
\Delta \dot{B}(t)= & k_{2} \Delta A(t)-\left(k_{3}+k_{-2}\right) \Delta B(t) \\
& +A_{s s} \Delta k_{2}(t)-B_{s s} \Delta k_{3}(t)-B_{s s} \Delta k_{-2}(t)+\Delta k_{-3}(t) \tag{A5}
\end{align*}
$$

or, in matrix form

$$
\begin{align*}
{\left[\begin{array}{l}
\Delta \dot{A}(t) \\
\Delta \dot{B}(t)
\end{array}\right] } & =\left[\begin{array}{ccc}
-\left(k_{2}+k_{-1}\right) & k_{-2} \\
k_{2} & -\left(k_{3}+k_{-2}\right)
\end{array}\right]\left[\begin{array}{l}
\Delta A(t) \\
\Delta B(t)
\end{array}\right] \\
& +\left[\begin{array}{cccccc}
1 & -A_{s s} & 0 & -A_{s s} & B_{s s} & 0 \\
0 & A_{s s} & -B_{s s} & 0 & -B_{s s} & 1
\end{array}\right]\left[\begin{array}{c}
\Delta k_{1}(t) \\
\Delta k_{2}(t) \\
\Delta k_{3}(t) \\
\Delta k_{-1}(t) \\
\Delta k_{-2}(t) \\
\Delta k_{-3}(t)
\end{array}\right] \tag{A6}
\end{align*}
$$

The transfer function matrix can be found from the relationship (Eq. 3, main paper):

$$
\begin{equation*}
H(s)=\frac{\Delta \mathbf{I}(s)}{\Delta \mathbf{k}(s)}=(s I-A)^{-1} B \tag{A7}
\end{equation*}
$$

where $\Delta \mathbf{k}(s)=\left[\Delta k_{1}(s), \Delta k_{2}(s), \Delta k_{3}(s), \quad \Delta k_{-1}(s), \quad \Delta k_{-2}(s), \Delta k_{-3}(s)\right]^{T}$, and $\Delta \mathbf{I}(s)=[\Delta A(s), \Delta B(s)]^{T}$. Applying Eq. A7 to the linear model in Eq. A6 gives the
following transfer function matrix

$$
\begin{aligned}
& H(s)=\left[\begin{array}{cc}
s+k_{2}+k_{-1} & -k_{-2} \\
-k_{2} & s+k_{3}+k_{-2}
\end{array}\right]^{-1}\left[\begin{array}{cccccc}
1 & -A_{s s} & 0 & -A_{s s} & B_{s s} & 0 \\
0 & A_{s s} & -B_{s s} & 0 & -B_{s s} & 1
\end{array}\right] \\
& =\frac{1}{\left(s+k_{2}+k_{-1}\right)\left(s+k_{3}+k_{-2}\right)-k_{2} k_{-2}} \text {. } \\
& {\left[\begin{array}{cc}
s+k_{3}+k_{-2} & k_{-2} \\
k_{2} & s+k_{2}+k_{-1}
\end{array}\right] \cdot\left[\begin{array}{cccccc}
1 & -A_{s s} & 0 & -A_{s s} & B_{s s} & 0 \\
0 & A_{s s} & -B_{s s} & 0 & -B_{s s} & 1
\end{array}\right]} \\
& =\frac{1}{\left(s+k_{2}+k_{-1}\right)\left(s+k_{3}+k_{-2}\right)-k_{2} k_{-2}} \text {. } \\
& {\left[\begin{array}{cccc}
s+k_{3}+k_{-2} & -A_{s s}\left(s+k_{3}\right) & -B_{s s} k_{-2} & \cdots \\
k_{2} & A_{s s}\left(s+k_{-1}\right) & -B_{s s}\left(s+k_{2}+k_{-1}\right) & \cdots
\end{array}\right.} \\
& \left.\begin{array}{cccc}
\ldots & -A_{s s}\left(s+k_{3}+k_{-2}\right) & B_{s s}\left(s+k_{3}\right) & k_{-2} \\
\ldots & -A_{s s} k_{2} & B_{s s}\left(s+k_{-1}\right) & s+k_{2}+k_{-1}
\end{array}\right]
\end{aligned}
$$

from which the element $H_{B, k_{2}}(s)$ is found as

$$
\begin{equation*}
H_{B, k_{2}}(s)=\frac{\Delta B(s)}{\Delta k_{2}(s)}=\frac{A_{s s}\left(s+k_{-1}\right)}{\left(s+k_{2}+k_{-1}\right)\left(s+k_{3}+k_{-2}\right)-k_{2} k_{-2}} \tag{A8}
\end{equation*}
$$

which is identical to Eq. 5 in the main paper.

Amount of Released/Absorbed B during Adaptation in Motif M1* (Fig. 4)

Setting Eqs. A1 and A2 (see above) to zero, with the additional condition that $k_{-1}=$ $k_{-2}=k_{-3}=0$, we get the steady state concentrations in A and B as $A_{s s}=k_{1} / k_{2}$ and $B_{s s}=k_{1} / k_{3}$, respectively. At $t=0$ we assume that $A(0)=A_{s s}$ and $B(0)=B_{s s}$, and that k_{2} undergoes a step-wise change to $f \cdot k_{2}$ with $f>0$ and $f \neq 1$.

For $t \geq 0$ the response kinetics of A and B are calculated as:

$$
\begin{gather*}
A(t)=\frac{A_{s s}}{f}\left(1+(f-1) e^{-f k_{2} t}\right) \tag{A9}\\
B(t)=B_{s s}+\frac{k_{1}(f-1)}{k_{3}-f k_{2}}\left(e^{-f k_{2} t}-e^{-k_{3} t}\right) \tag{A10}
\end{gather*}
$$

The amount of released or absorbed B during the robust perfect adaptation of B is calculated by using the integral

$$
\begin{equation*}
I(t)=\int\left(B(t)-B_{s s}\right) d t=\frac{k_{1}(f-1)}{k_{3}-f k_{2}}\left(\frac{e^{-k_{3} t}}{k_{3}}-\frac{e^{-f k_{2} t}}{f k_{2}}\right)+C \tag{A11}
\end{equation*}
$$

Because $\lim _{t \rightarrow \infty} I(t)=0$ and $I(0)=-\frac{f-1}{f} \cdot \frac{k_{1}}{k_{2} k_{3}}$ we get

$$
\begin{equation*}
\int_{0}^{\infty}\left(B(t)-B_{s s}\right) d t=\lim _{t \rightarrow \infty} I(t)-I(0)=\frac{f-1}{f} \cdot \frac{k_{1}}{k_{2} k_{3}} \tag{A12}
\end{equation*}
$$

Influence of Negative Feedback and Positive Feedforward on Adaptation

Feedback and feedforward loops are common regulatory elements. We illustrate here with a few examples how negative feedback and positive feedforward can affect adaptation (a description of all possible combinations of negative/positive feedback/feedforward loops is beyond the scope of this paper). First we consider an extension of motif M2 in the main paper by including a negative feedback from intermediate B_{n} to k_{1} :

with the inhibition term (to be multiplied with k_{1}) $\frac{1}{K_{I}+B_{n}} . K_{I}$ is the inhibition constant. The legends of Figs. S1a and b give the rate equations and numerical values for K_{I} and rate constants. The transfer function from k_{2} to $B_{n}(n \geq 2), H_{B_{n}, k_{2}}(s)$, is given by:

$$
\begin{equation*}
H_{B_{n}, k_{2}}(s)=\frac{\Delta B_{n}(s)}{\Delta k_{2}(s)}=\frac{A_{s s} \cdot s \prod_{i=3}^{n+1} k_{i}}{\frac{1}{\left(K_{I}+B_{n, s s}\right)^{2}} \prod_{i=1}^{n+1} k_{i}+\prod_{i=2}^{n+2}\left(s+k_{i}\right)} \tag{A13}
\end{equation*}
$$

From Eq. A13 we get $s=0$ as the only solution to the numerator polynomial $n(s)=$ 0 , i.e., a zero in origo independent of the rate constants. The transfer functions for intermediates B_{1} to B_{n-1} show slightly different structures, but they all have a zero in origo (data not shown). Hence, a step in k_{2} results in robust perfect adaption for each B_{i}-intermediate. $H_{B_{n}, k_{2}}(s)$ has both real and complex-conjugated poles, which results in an underdamped response (over- and undershooting) in the perfect adapted B_{i} 's (Fig. S1a). For high K_{I} values the response becomes overdamped (Fig. S1b), which is due to the fact that the real pole dominates over the complex-conjugated poles as K_{I} increases. In case the negative feedback from B_{n} is acting downstream of k_{2}, at k_{i} 's with $i>2$, all B_{i} 's show robust perfect adaptation. If the perturbing step is applied to k_{n+2}, i.e., at the end of the network, none of the B_{i} 's show perfect adaptation.

To illustrate the influence of positive feedforward, we consider two cases each shown in scheme M7.

In the left scheme of M7 A acts positively on k_{n+1}, while in the right scheme B_{1} acts positively on k_{n+1}. In each case the positive feedforward loop is realized by multiplying in the rate equations k_{n+1} with the factors $K_{a c t} A$ or $K_{a c t} B_{1}$, respectively, where $K_{a c t}$ is an "activation constant". In the case A acts positively on k_{n+1}, concentration B_{n-1} is not perfectly adapted, because A does not show perfect adaptation. All other B_{i} 's show robust perfect adaptation. The transfer function from k_{2} to $B_{n}, H_{B_{n}, k_{2}}(s)$ for $n \geq 3$, is given as:

$$
\begin{equation*}
H_{B_{n}, k_{2}}(s)=\frac{\Delta B_{n}(s)}{\Delta k_{2}(s)}=\frac{-K_{a c t} \cdot A_{s s} \cdot s \cdot k_{n+1}\left(B_{n-1, s s} \prod_{i=3}^{n}\left(s+k_{i}\right)-A_{s s} \prod_{i=3}^{n} k_{i}\right)}{\left(\prod_{i=2}^{n}\left(s+k_{i}\right)\right)\left(s+K_{a c t} \cdot A_{s s} \cdot k_{n+1}\right)\left(s+k_{n+2}\right)} \tag{A14}
\end{equation*}
$$

$H_{B_{n}, k_{2}}(s)$ has several zeros. Based on the fact that there is a zero in origo $(s=0)$ to the solution $n(s)=0$, independent of the rate constants, B_{n} shows robust perfect adaptation. However, the total response in B_{n} will be influenced by the other zeros as indicated in Fig. 2 of the main paper.

In case intermediate B_{1} acts positively on k_{n+1} (the right scheme in M7) all B_{i} 's are robust perfectly adapted. The transfer function from k_{2} to $B_{n}, H_{B_{n}, k_{2}}(s)$ for $n \geq 4$, is given as:

$$
\begin{equation*}
H_{B_{n}, k_{2}}(s)=\frac{\Delta B_{n}(s)}{\Delta k_{2}(s)}=\frac{K_{a c t} \cdot A_{s s} \cdot s \cdot k_{n+1}\left(B_{n-1, s s} \cdot s \prod_{i=4}^{n}\left(s+k_{i}\right)+B_{s s} \prod_{i=3}^{n} k_{i}\right)}{\left(\prod_{i=2}^{n}\left(s+k_{i}\right)\right)\left(s+K_{a c t} \cdot B_{s s} \cdot k_{n+1}\right)\left(s+k_{n+2}\right)} \tag{A15}
\end{equation*}
$$

Figs. S1c and d show response kinetics of the two cases in M7 for $n=4$.

Fig. S1. Perfect adaptation kinetics in B_{1} to B_{4} for negative feedback scheme M6 $(n=4)$. The step perturbation is applied to k_{2} with (a) $K_{I}=0$ (strong inhibition) and (b) $K_{I}=5.0$ (weak inhibition). The rate equations are: $d A / d t=\frac{k_{1}}{K_{I}+B_{4}}-k_{2} \cdot A, d B_{1} / d t=k_{2} \cdot A-k_{3} \cdot B_{1}$, and $d B_{i} / d t=k_{i+1} \cdot B_{i-1}-k_{i+2} \cdot B_{i}, i=2, \ldots 4$ with all rate constants equal to 1.0. (c) Adaptation kinetics for left scheme in $\mathbf{M} 7$ ($n=4$, and step-wise perturbation of k_{2}) where A is acting positively on k_{5} with rate equations: $d A / d t=k_{1}-k_{2} \cdot A, d B_{1} / d t=k_{2} \cdot A-k_{3} \cdot B_{1}, d B_{2} / d t=$ $k_{3} \cdot B_{1}-k_{4} \cdot B_{2}, d B_{3} / d t=k_{4} \cdot B_{2}-K_{a c t} \cdot A \cdot k_{5} \cdot B_{3}, d B_{4} / d t=K_{a c t} \cdot A \cdot k_{5} \cdot B_{3}-k_{6} \cdot B_{4}$. All rate constant values and $K_{\text {act }}$ are set to 1.0. (d) Similar system as in (c) but B_{1} is acting positively on k_{5} (right scheme in $\mathrm{M} 7, n=4$). All rate constants and $K_{a c t}$ are set to 1.0 . Note that all B_{i} show robust perfect adaptation, but B_{3} is the only intermediate which shows different adaptation kinetics (undershooting).

Derivation of Eq. 9 for motif M5

From motif M5 the following relationship holds at steady state

$$
\begin{align*}
A_{s s} & =\frac{k_{1}}{k_{2}} \tag{A16}\\
I_{s s} & =\frac{k_{5}}{k_{6}} \tag{A17}
\end{align*}
$$

Moreover, the following differential equation can be found for the dynamics of intermediate R_{a}^{*} :

$$
\begin{equation*}
\frac{d R_{a}^{*}(t)}{d t}=-k_{4} \frac{k_{5}}{k_{6}} R_{a}^{*}(t)+k_{3} \frac{k_{1}}{k_{2}} R_{i}(t) \tag{A18}
\end{equation*}
$$

Assuming steady state, i.e. $\frac{d R_{a}^{*}(t)}{d t}=0$ gives

$$
\begin{equation*}
k_{2} k_{4} k_{5} R_{a, s s}^{*}=k_{1} k_{3} k_{6} R_{i, s s} \tag{A19}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
R_{t o t}=R_{a, s s}^{*}+R_{i, s s} \tag{A20}
\end{equation*}
$$

gives

$$
\begin{equation*}
k_{2} k_{4} k_{5} R_{a, s s}^{*}=k_{1} k_{3} k_{6}\left(R_{t o t}-R_{a, s s}^{*}\right) \tag{A21}
\end{equation*}
$$

which again can be organized as

$$
\begin{equation*}
R_{a, s s}^{*}=\frac{k_{1} k_{3} k_{6}}{k_{1} k_{3} k_{6}+k_{2} k_{4} k_{5}} R_{t o t} \tag{A22}
\end{equation*}
$$

Derivation of the Transfer functions for motif M5

According to Table 1 there are six $k_{j} \rightarrow k_{i}$ substitutions that give perfect adaptation in both R_{a}^{*} and R_{i}. In the following the individual substitutions and corresponding transfer functions for perfect adaptation sites are presented in more detail.

1. Substitution $k_{2} \rightarrow k_{3}$ where $k_{2}=\alpha k_{3}$ produces the following transfer function from $\Delta k_{3}(s)$ to $\Delta R_{a}^{*}(s)$

$$
\begin{equation*}
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{3}(s)}=\frac{A_{s s} R_{i, s s} \cdot s}{\left(s+\alpha k_{3}\right)\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)} \tag{A23}
\end{equation*}
$$

As can be seen, this transfer function has a zero in origo.
2. Substitution $k_{2} \rightarrow k_{6}$ where $k_{2}=\alpha k_{6}$ produces the following transfer function from $\Delta k_{6}(s)$ to $\Delta R_{a}^{*}(s)$

$$
\begin{align*}
H(s)= & \frac{\Delta R_{a}^{*}(s)}{\Delta k_{6}(s)} \\
= & -\left(\frac{\left(k_{3} \alpha R_{i, s s} A_{s s}+k_{4} I_{s s}\left(R_{i, s s}-R_{t o t}\right)\right) \cdot s}{\left(s+\alpha k_{6}\right)\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)}\right. \\
& \left.\quad+\frac{k_{3} \alpha k_{6} R_{i, s s} A_{s s}+k_{4} \alpha k_{6} I_{s s}\left(R_{i, s s}-R_{t o t}\right)}{\left(s+\alpha k_{6}\right)\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)}\right) \tag{A24}
\end{align*}
$$

In order to show that this transfer function actually has a zero in origo, we have to use Eq. A19 and Eq. A20 such that the real part of the denominator of Eq.A24 can be written as (using $k_{2}=\alpha k_{6}$, Eq. A17 and Eq. A16)

$$
\begin{align*}
k_{3} \alpha k_{6} R_{i, s s} A_{s s}+k_{4} \alpha k_{6} I_{s s}\left(R_{i, s s}-R_{t o t}\right) & =k_{3} k_{2} R_{i, s s} \frac{k_{1}}{k_{2}}+k_{4} k_{2} \frac{k_{5}}{k_{6}}\left(R_{i, s s}-\left(R_{a, s s}^{*}+R_{i, s s}\right)\right) \\
& =k_{1} k_{3} k_{6} R_{i, s s}-k_{2} k_{4} k_{5} R_{a, s s}^{*} \tag{A25}
\end{align*}
$$

Hence, by inserting Eq. A19 into Eq. A25, it is shown that the real part of the denominator is zero, and the solution to $n(s)=0$ in Eq. A24 is $s=0$. Therefore, the transfer function in Eq. A24 can be written

$$
\begin{equation*}
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{6}(s)}=-\frac{\left(k_{3} \alpha R_{i, s s} A_{s s}+k_{4} I_{s s}\left(R_{i, s s}-R_{t o t}\right)\right) \cdot s}{\left(s+\alpha k_{6}\right)\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)} \tag{A26}
\end{equation*}
$$

which has a zero in origo.
3. Substitution $k_{4} \rightarrow k_{1}$ where $k_{4}=\alpha k_{1}$ produces the following transfer function from $\Delta k_{1}(s)$ to $\Delta R_{a}^{*}(s)$

$$
\begin{align*}
H(s) & =\frac{\Delta R_{a}^{*}(s)}{\Delta k_{1}(s)} \\
& =\frac{\alpha I_{s s}\left(R_{i, s s}-R_{t o t}\right) \cdot s+k_{3} R_{i, s s}+k_{2} \alpha I_{s s}\left(R_{i, s s}-R_{t o t}\right)}{\left(s+k_{2}\right)\left(s+k_{3} A_{s s}+\alpha k_{1} I_{s s}\right)} \tag{A27}
\end{align*}
$$

In order to show that this transfer function actually has a zero in origo, we have to use Eq. A19 and Eq. A20 such that the real part of the denominator of Eq.A27 can be written as (using $k_{5}=\alpha k_{1}$ and Eq. A17)

$$
\begin{align*}
k_{3} R_{i, s s}+k_{2} \alpha I_{s s}\left(R_{i, s s}-R_{t o t}\right) & =k_{3} R_{i, s s}+k_{2} \alpha I_{s s}\left(R_{i, s s}-\left(R_{a, s s}^{*}+R_{i, s s}\right)\right) \\
& =k_{3} R_{i, s s}-k_{2} \alpha I_{s s} R_{a, s s}^{*} \\
& =k_{1} k_{3} R_{i, s s}-\alpha k_{1} k_{2} I_{s s} R_{a, s s}^{*} \\
& =k_{1} k_{3} k_{6} R_{i, s s}-k_{2} k_{4} \frac{k_{5}}{k_{6}} k_{6} R_{a, s s}^{*} \\
& =k_{1} k_{3} k_{6} R_{i, s s}-k_{2} k_{4} k_{5} R_{a, s s}^{*} \tag{A28}
\end{align*}
$$

Hence, by inserting Eq. A19 into Eq. A28, it is shown that the real part of the denominator is zero, and the solution to $n(s)=0$ in Eq. A27 is $s=0$. Therefore, the transfer function in Eq. A27 can be written

$$
\begin{equation*}
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{1}(s)}=\frac{\alpha I_{s s}\left(R_{i, s s}-R_{t o t}\right) \cdot s}{\left(s+k_{2}\right)\left(s+k_{3} A_{s s}+\alpha k_{1} I_{s s}\right)} \tag{A29}
\end{equation*}
$$

which has a zero in origo.
4. Substitution $k_{4} \rightarrow k_{6}$ where $k_{4}=\alpha k_{6}$ produces the following transfer function from $\Delta k_{6}(s)$ to $\Delta R_{a}^{*}(s)$

$$
\begin{equation*}
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{6}(s)}=\frac{\alpha I_{s s}\left(R_{i, s s}-R_{t o t}\right) s}{\left(s+k_{3} A_{s s}+\alpha k_{6} I_{s s}\right)\left(s+k_{6}\right)} \tag{A30}
\end{equation*}
$$

As can be seen, this transfer function has a zero in origo.
5. Substitution $k_{5} \rightarrow k_{1}$ where $k_{5}=\alpha k_{1}$ produces the following transfer function from $\Delta k_{1}(s)$ to $\Delta R_{a}^{*}(s)$

$$
\begin{align*}
H(s) & =\frac{\Delta R_{a}^{*}(s)}{\Delta k_{1}(s)} \\
& =\frac{\left(k_{3} R_{i, s s}+\alpha k_{4}\left(R_{i, s s}-R_{t o t}\right)\right) \cdot s+k_{3} k_{6} R_{i, s s}+\alpha k_{2} k_{4}\left(R_{i, s s}-R_{t o t}\right)}{\left(s+k_{2}\right)\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)} \tag{A31}
\end{align*}
$$

In order to show that this transfer function actually has a zero in origo, we have to use Eq. A19 and Eq. A20 such that the real part of the denominator of Eq.A31 can be written as (using $k_{5}=\alpha k_{1}$)

$$
\begin{align*}
k_{3} k_{6} R_{i, s s}+\alpha k_{2} k_{4}\left(R_{i, s s}-R_{t o t}\right) & =k_{3} k_{6} R_{i, s s}+\alpha k_{2} k_{4}\left(R_{i, s s}-\left(R_{a, s s}^{*}+R_{i, s s}\right)\right) \\
& =k_{3} k_{6} R_{i, s s}-\alpha k_{2} k_{4} R_{a, s s}^{*} \\
& =k_{1} k_{3} k_{6} R_{i, s s}-\alpha k_{1} k_{2} k_{4} R_{a, s s}^{*} \\
& =k_{1} k_{3} k_{6} R_{i, s s}-k_{2} k_{4} k_{5} R_{a, s s}^{*} \tag{A32}
\end{align*}
$$

Hence, by inserting Eq. A19 into Eq. A32, it is shown that the real part of the denominator is zero, and the solution to $n(s)=0$ in Eq. A31 is $s=0$. Therefore, the transfer function in Eq. A31 can be written

$$
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{1}(s)}=\frac{\left(k_{3} R_{i, s s}+\alpha k_{4}\left(R_{i, s s}-R_{t o t}\right)\right) \cdot s}{\left(s+k_{2}\right)\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)}
$$

which has a zero in origo.
6. Substitution $k_{5} \rightarrow k_{3}$ where $k_{5}=\alpha k_{3}$ produces the following transfer function from $\Delta k_{3}(s)$ to $\Delta R_{a}^{*}(s)$

$$
\begin{equation*}
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{3}(s)}=\frac{A_{s s} R_{i, s s} \cdot s+A_{s s} R_{i, s s} k_{6}+k_{4} \alpha\left(R_{i, s s}-R_{t o t}\right)}{\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)} \tag{A33}
\end{equation*}
$$

In order to show that this transfer function actually has a zero in origo, we have to use Eq. A19 and Eq. A20 such that the real part of the denominator of Eq.A33 can be written as (using $k_{5}=\alpha k_{3}$ and Eq.A16)

$$
\begin{align*}
A_{s s} R_{i, s s} k_{6}+k_{4} \alpha\left(R_{i, s s}-R_{t o t}\right) & =A_{s s} R_{i, s s} k_{6}+k_{4} \alpha\left(R_{i, s s}-\left(R_{a, s s}^{*}+R_{i, s s}\right)\right) \\
& =A_{s s} R_{i, s s} k_{6}-k_{4} \alpha R_{a, s s}^{*} \\
& =\frac{k_{1}}{k_{2}} R_{i, s s} k_{6}-k_{4} \alpha R_{a, s s}^{*} \\
& =k_{1} k_{3} k_{6} R_{i, s s}-k_{2} k_{4} \alpha k_{3} R_{a, s s}^{*} \\
& =k_{1} k_{3} k_{6} R_{i, s s}-k_{2} k_{4} k_{5} R_{a, s s}^{*} \tag{A34}
\end{align*}
$$

Hence, by inserting Eq. A19 into Eq. A34, it is shown that the real part of the denominator is zero, and the solution to $n(s)=0$ in Eq. A33 is $s=0$. Therefore, the transfer function in Eq. A33 can be written

$$
\begin{equation*}
H(s)=\frac{\Delta R_{a}^{*}(s)}{\Delta k_{3}(s)}=\frac{A_{s s} R_{i, s s} \cdot s}{\left(s+k_{3} A_{s s}+k_{4} I_{s s}\right)\left(s+k_{6}\right)} \tag{A35}
\end{equation*}
$$

which has a zero in origo.

