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Abstract

Theoretical modelling for contact angle hysteresis carried out to date has been mostly limited to several idealized surface configurations,

either rough or heterogeneous surfaces. This paper presents a preliminary study on the thermodynamics of contact angles on rough and

heterogeneous surfaces by employing the principle of minimum free energy and the concept of liquid front. Based on a two-dimensional

regular model surface, a set of relations were obtained, which correlate advancing, receding and system equilibrium contact angles to surface

topography, roughness and heterogeneity. It was found that system equilibrium contact angles (hES) can be expressed as a function of surface

roughness factor (d) and the Cassie contact angle (hC): coshES=dcoshC. This expression can be reduced to the classical Wenzel equation.:

hES=hW for rough but homogeneous surfaces, and the classical Cassie equation hES=hC for heterogeneous but smooth surfaces. A non-

dimensional parameter called surface feature factor (x) was proposed to classify surfaces into three categories (types): roughness-dominated,

heterogeneity-dominated and mixed-rough-heterogeneous. The prediction of advancing and receding contact angles of a surface is dependent

on which category the surface belongs to. The thermodynamic analysis of contact angle hysteresis was further extended from the regular

model surface to irregular surfaces; consistent results were obtained. The current model not only agrees well with the models previously

studied by other researchers for idealized surfaces, but also explores more possibilities to explain the reported experimental results/

observations that most existing theories could not explain.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Contact angle has been widely used for characterizing

interfacial phenomena, including wetting/dewetting of solid

surfaces, capillary penetration into porous media, coating and

painting. On an ideal solid surface, which is smooth,

homogeneous, isotropic and nondeformable, the contact

angle is expressed by the well-known Young equation [1]

clvcoshY ¼ csv � csl ð1Þ

where hY is the Young contact angle (also called the intrinsic
contact angle, symbolized by he), and clv, csv and csl are the
interfacial (surface) tensions of the liquid–vapor, solid–

vapor and solid–liquid interfaces, respectively. The Young

equation indicates that hY is a unique function of the

interfacial tensions, csv, csl, and clv. However, experimentally

observed contact angles are not uniquely determined by these

interfacial tensions [2]. For real surfaces, there exists a range

of contact angles [2,3]; the largest and the smallest among

them are termed the advancing contact angle, ha, and the

receding contact angle, hr, respectively. The difference

between the advancing and the receding contact angle is the

so-called contact angle hysteresis. Surface roughness and

heterogeneity as a cause for contact angle hysteresis have

been studied by many researchers over the past few decades.

Wenzel [4] first extended the Young Eq. (1) to describing

rough surfaces using a surface roughness factor, d:

clvcoshw=d ¼ csv � csl ð2Þ

where d is defined as the ratio of the actual surface area to

the geometrically projected area, and hw is the Wenzel

contact angle. For heterogeneous surfaces, Cassie [5]

obtained the following equation for solid surfaces consisting

of two domains with intrinsic contact angles, he1 and he2:

coshC ¼ a1coshe1 þ a2coshe2 ð3Þ

where a1 and a2 are the fractional surface areas of the two

types of surfaces such that a1+a2=1, and hC is the Cassie

contact angle, the equilibrium contact angle for heteroge-

neous but smooth solid surfaces.

Shuttleworth and Bailey [6] and Johnson and Dettre [7,8]

developed surface models that provided the first quantitative

results linking contact angle hysteresis to surface hetero-

geneity and roughness. Later, Neumann and Good [3] and

Eick et al. [9] developed a contact angle model for smooth but
heterogeneous vertical plates; they demonstrated the exis-

tence of a large number of metastable states. A fundamental

study by Huh and Mason [10] also revealed the effect of

surface roughness on wetting, where they considered a liquid

drop growing or retracting concentrically on a solid surface

with axisymmetric grooves. In the early 1980s, Oliver and

Mason [11] showed that wetting hysteresis occurs on all

surfaces, exceeding the range predicted theoretically from

roughness measurements made by surface profilometry.

All these early models of contact angle hysteresis on solid

surfaces assumed the surface to be either smooth (flat) or

heterogeneous (chemically), but not to be both. Moreover,

these models considered simple, periodic modulations of

surface profiles, such as parallel or axisymmetric grooves.

However, real surfaces are often irregular in shape. In the mid

1980s, Joanny and de Gennes [12] and Robbins and Joanny

[13] developed a model for contact angle hysteresis of solid

surfaces that had non-periodic profiles. The model was

developed for weakly or strongly heterogeneous surfaces and

able to predict contact angle hysteresis using the concept of

pinning of three-phase contact lines by surface impurities and

existence of metastable states. Recently, Marmur and co-

workers [14–18] proposed a model for 2-D (cylindrical)

drops on a periodically heterogeneous but smooth solid

surface. Their calculations revealed a possibility of the

dependence of advancing and receding contact angles on

the drop volume. In 2002, a model by Extrand [19] for rough

and ultrahydrophobic surfaces showed that contact angle

hysteresis is independent of absolute values of surface

roughness, but the surface asperity shape and linear fraction

of the contact line. Öpik [20] also studied contact angle

hysteresis by considering a random distribution of weak

heterogeneities on a solid surface. Based on a probability

analysis, he proposed a model that could show contact angle

hysteresis to arise as a result of a random distribution of

irregularities (heterogeneities) of the surface.

Except for surface roughness and heterogeneity, there are

other factors that may cause contact angle hysteresis. Lam

and co-workers [21–23] considered liquid absorption and/or

retention (swelling) to be responsible for the hysteresis that

they observed on smooth surfaces of polymer films. They

found [22] that ‘‘Models ascribing contact angle hysteresis to

features of the solid surface such as roughness and hetero-

geneity may well be applicable in certain situations, but not

on carefully prepared films of polymeric materials’’. In a
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Chilbowski’s paper [24], contact angle hysteresis is consid-

ered to be due to the liquid film left behind the drop during the

contact line retracting. Also, there are studies, e.g., Decker et

al. [25] and Gouin [26,27], indicating that the three-phase

contact line imposes an impact on contact angle hysteresis.

These studies indicate that contact angle hysteresis is a very

complicated phenomenon and many factors can play a role.

In the present study, we focus on the effect of surface

roughness and heterogeneity on contact angle hysteresis and

limit our scope of modelling to the case where no liquid film

is present and no adsorption occurs. Contact angle hysteresis

could also arise from molecular rearrangements occurring at

solid–liquid interfaces after they have come into contact [28].

From the above review, we find that research on contact

angle phenomena has been active. Various researchers have

studied the effect of roughness or heterogeneity on contact

angles with model surfaces of regular or periodic distribution

patterns [3–11] and, in some cases, with weakly or strongly

heterogeneous surfaces [12,13] without a periodic pattern.

Each model seems to be developed for a specific type of

surface. To date, there has been nomodel available for contact

angle hysteresis on mixed rough-heterogeneous surfaces

where the effects of roughness and heterogeneity are equally

important. Until now, there has been no treatment that gives

quantitative relations between contact angle hysteresis and

surface topography/heterogeneity for rough, heterogeneous

surfaces. In this study, we made a preliminary attempt to

develop a thermodynamic treatment for rough, heteroge-

neous surfaces. A two-dimensional regular rough-heteroge-

neous model surface was proposed. A set of quantitative

relations that correlate advancing, receding and system

equilibrium contact angles to surface topography and

heterogeneity were obtained. The expression for system

equilibrium contact angles can be reduced to the Wenzel

equation for rough but homogeneous surfaces, and to the

Cassie equation for heterogeneous but smooth surfaces. The

proposed regular model surface was further extended to two-

dimensional irregular surfaces.

Because different sets of contact angle equations apply to

different surfaces, in order to classify different types of

surfaces, we propose a surface feature factor (x) to divide

surfaces into three categories: roughness-dominated, hetero-

geneity-dominated, and mixed rough-heterogeneous surfaces.

Physically, this new surface feature factor represents competi-

tion between surface roughness and surface heterogeneity in

affecting contact angles. For a smooth surface, x =0. For a

homogeneous surface, x =V. In the case of mixed rough-

heterogeneous surfaces, 0.2<x <2. This non-dimensional

factor may be used in classifying surfaces just like the

Reynold’s number in characterizing fluid flow patterns.
( (    θ θ+∆θ

Fig. 1. A demonstration of liquid front. Left drawing represents a sessile

drop sitting on a horizontal solid surface. Right drawing is the cases of a

vertical plate partially immersed in a fluid.
2. Theory

The complexity of contact angles on rough, heteroge-

neous surfaces is twofold. First, these surfaces themselves
are complicated in terms of surface configuration; both

surface roughness and heterogeneity have to be taken into

consideration. Second, the effect of liquid menisci and

gravity on the system free energy is complicated. When a

liquid forms a contact angle on a solid surface, the meniscus

of the liquid is controlled by the Laplace equation of

capillarity, which is a non-linear differential equation,

difficult to solve. Only the vertical plate model of Neumann

and coworkers [2,3,9] treats the menisci using the Laplace

equation and takes the effect of gravity into consideration.

Other models, e.g., the sessile drop model of Marmur [14],

consider the profile of a sessile drop as a spherical cap, and

neglect the effect of gravity. In order to study the

thermodynamics of contact angles on rough, heterogeneous

surfaces, certain assumptions must also be made. In this

section, we first introduce the concept of liquid front,

followed by proposing a model rough, heterogeneous

surface. Assumptions are then made for the thermodynamic

treatments. Finally, the equations that relate the change in

system free energy to macroscopic/apparent contact angle

are derived.

2.1. The liquid front

When a sessile drop, sitting on a horizontal solid surface,

spreads from a state with a contact angle h to an adjacent

one with a contact angle h +Dh, as shown in Fig. 1 (left), the
free energy of the system will change due to (1) a change in

solid–vapor interfacial area and a corresponding change in

solid–liquid interfacial area, (2) a change in liquid–vapor

interfacial area, and (3) the work which has to be done

against gravity for such a change in configuration. The first

change can be easily determined by the position of the three-

phase contact line. The second change is directly related to

the liquid meniscus. It is very difficult to determine the

exact change in liquid–vapor interfacial area (or liquid

surface area), particularly for complicated surfaces such as

those on rough-heterogeneous solid surfaces. The free

energy change due to the work done against gravity is also

difficult to be calculated. As a result, the effect of gravity is

often neglected.



J. Long et al. / Advances in Colloid and Interface Science 118 (2005) 173–190176
In order to determine the change in liquid surface area,

simplification/approximation must be made. In general, the

size of a sessile drop is much larger than the scale of surface

roughness and heterogeneity. As shown in Fig. 1 (left), the

liquid front, from the three-phase contact point up to a

certain point on the liquid surface, can therefore be regarded

as a straight line. This treatment can be more clearly

illustrated by the case of a vertical plate immersed in a

liquid, Fig. 1 (right), which shows that the liquid front, from

the point indicated by the arrow to the three-phase contact

point, can be approximated as a straight line. As the liquid

front moving from one state with a contact angle h to an

adjacent one with a contact angle h +Dh has little effect on

the bulk liquid, the free energy change of the entire system

can be assumed to be mainly determined by the interfacial

area changes nearby the three-phase contact line. The free

energy change of the system due to the change of liquid

surface area can be determined by the movement of the

liquid front. This makes the free energy calculation and the

modelling of complicated (such as rough-heterogeneous)

surfaces possible. The concept of liquid front, in fact, was

previously adopted to derive the Young equation [29],

although it was not explicitly defined in the present way.

2.2. Regular model surface and assumptions

The regular rough, heterogeneous model surface pro-

posed is shown in Fig. 2. It is a two-dimensional model,

which means all parameters will not change in the z

direction or the direction normal to the plane of the paper.

This surface consists of alternating material strips indicated
0

cy

0

H0

 

w1

w2

)β

Fig. 2. A cross-sectional view of the model rough and heterogeneous surface. l: len

the bump. c: length of the top side of the bump. b: length of the smooth portion of

liquid front. H: length of the liquid front at any location. hM: macroscopic/apparent

the surface. w1, w2: the length of a black and a grey segment.
by black and grey segments, respectively. The widths of the

two strips may not be equal. Each material strip has its own

intrinsic contact angle. Therefore, the intrinsic contact angle

may change along the x direction at different surface spots

and can be generally described as a function of x,

he ¼ he xð Þ: ð4Þ

The surface heterogeneity of this model can be extended

from two materials to three or more materials if necessary.

With respect to surface roughness, trapezoids are used to

represent the surface profile. Such a trapezoidal surface

configuration is a rather general geometry and can be

reduced to various simpler surface configurations as shown

in Fig. 3. At any point of the surface, the height of a surface

spot, y, can be expressed as a function of x:

y ¼ y xð Þ: ð5Þ

For a two-dimensional (cylindrical) sessile drop sitting

on such a model surface, the following assumptions are

made in order to calculate the free energy change of the

system:

(1) A liquid front exists and is of a straight line. The

movement of the liquid front and hence interfacial

area changes determine the free energy change of the

entire system.

(2) Gravity is negligible. On a horizontal solid surface,

this assumption is reasonable as the gravity centre of

the liquid drop will not change significantly as a result

of the liquid front movement. This assumption has

been used in most of the previous models [7,8,14].
x

l
b

h0

H

(x,y)
 

 M

(

(

α

θ

gth of a repeated roughness unit containing a trapezoidal bump. h0: height of

a repeat unit. a,b: geometric angles of the trapezoid. H0: initial height of the

contact angle. The black and grey segments represent different materials on



a b

c d

e f

g h

Fig. 3. Some specific surface configurations that can be derived from the

model surface shown in Fig 2. a — isosceles triangles (c =b =0, a =b); b —
isosceles triangles with varying h0; c — triangles (c =b =0, a <b); d —

triangles (c =b =0, a >b); e — triangles (c =0, b m0, a =b); f — isosceles

trapezoids (c m0, b =0, a =b); g — rectangles (a =b =90-); h — isosceles

trapezoids (a =b).
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(3) There is no effect of line tension as this is a two-

dimensional model and the three-phase contact line is

a straight line. In fact, even if the sessile drop is three-

dimensional, the line tension is extremely small and

thus can be neglected for a macroscopic drop [30].

(4) The Young equation is locally valid. This assumption

is essentially correct and has been obtained as a result

by the model of Li and Neumann [2]. It is also proved

to be correct by Wolansky and Marmur [31] if line

tension can be ignored.

(5) The solid surface itself is undeformable and rigid and

there is no liquid film existing in front of the three-

phase contact line.

2.3. Changes in system free energy

When the liquid front moves from the reference state to

an adjacent configuration, the total free energy of the system

will change due to changes in solid–vapor/solid–liquid

interfacial area and liquid–vapor interfacial area. The

system free energy change (DF) can be given by

DF ¼ DF1 þ DF2 ð6Þ

where DF1 is the free energy change due to the change in

solid–vapor interfacial area and the corresponding change

in solid–liquid interfacial area, and DF2 is the free energy

change due to a change in liquid–vapor interfacial area.

DF1 is the driving force term, which represents the work

done on the system in replacing the solid–vapor interface

(of interfacial free energy, csv) with the solid– liquid

interface (of interfacial free energy, csl):

d DF1ð Þ ¼ � L csv � cslð Þds ð7Þ

where L is the liquid front width, and s is the topographic

length of the (rough) surface, which is a function of x.
The Young equation is locally valid:

clvcoshe ¼ csv � csl ð8Þ

where he is the local intrinsic contact angle, which is a

function of x or s (the topographic length of the real surface

starting from the origin). Combining Eqs. (4), (7) and (8

gives

DF1 ¼
Z s

0

� Lclvcoshe xð Þds: ð9Þ

The term DF2 is the work done on the system for

expanding the liquid surface:

DF2 ¼ LclvDH ð10Þ

where clv is the interfacial free energy (tension) of liquid–

vapor, and DH is the increase in liquid front length:

DH ¼ H � H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � yð Þ2 þ x2

q
� H0 ð11Þ

Combining Eqs. (10) and (11) gives

DF2 ¼ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � yð Þ2 þ x2

q
� H0

� �
ð12Þ

From Eqs. (6), (9) and (12) the system free energy change

can be expressed by

DF ¼
Z s

0

� Lclvcoshe xð Þds

þ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � yð Þ2 þ x2

q
� H0

� �
ð13Þ

To correlate the system free energy change with the

macroscopic/apparent contact angle, hM, the following

geometric relation can be employed:

tanhM ¼ H0 � y

x
ð14Þ

Combining Eqs. (4), (5), (13) and (14), the system free

energy change as a function of the macroscopic contact

angle can be calculated. A Java program has been written to

implement all the calculations presented in this paper. In all

calculations, we set L=1 m and clv=72.6 mJ/m2 (water

surface tension at room temperature) for convenience.

To validate this model, the system free energy change for

several specific surfaces studied by Neumann and co-

workers [2,3,9], including the idealized, smooth and

homogeneous surface, the idealized rough but homogeneous

surface, and the idealized heterogeneous but smooth surface,

were computed. Details can be found in Appendix A. The

results show that this model agrees with all existing models

for these specific surfaces. In addition, in all the calculations

of free energy, a chosen H0 much larger than the size of

surface roughness or heterogeneity unit was used. It was

found in fact that advancing and receding contact angles are

not affected by H0 even if H0 is close to the size of a

roughness peak. However, system equilibrium angles are
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greatly affected by the value of H0. To obtain a system

equilibrium angle close to the theoretically predicted value,

a H0 much larger than the size of the roughness peaks (e.g.,

5¨10 times larger) must be used. A detailed discussion on

the effect of H0 is given in Appendix B.

In the following, the proposed model is applied to more

general surfaces, being both rough and heterogeneous. The

subsequent three sections will, respectively, present the

results for three types of rough, heterogeneous surfaces:

roughness-dominated, heterogeneity-dominated, and mixed

rough-heterogeneous surfaces.
3. Roughness-dominated surfaces

For rough, heterogeneous surfaces, if the characteristic

size of surface heterogeneity, e.g., the strip width of

alternating surface materials, is much smaller than the

characteristic size of roughness, e.g., the width or height of

the bump (Fig. 2), such surfaces can be considered to be

roughness-dominated. An applicable parameter will be

defined in Section 6 to determine if a surface is rough-

ness-dominated. Let l =200 Am, c =50 Am, h0=30 Am,

b =30-, a =45-, he1=50-, he2=70-, w1=10 Am, w2=10

Am, and H0=1600 Am (see Fig. 2 and the Nomenclature for

the symbols used). In this case, the length of a bump, l, is 10

times the width of the two materials, w1+w2. The system

free energy change as a function of the macroscopic contact

angle for such a roughness-dominated surface is shown in

Fig. 4.

The shape of energy barriers in Fig. 4 is similar to the

shape of the surface bumps shown in Fig. 2. This finding

indicates that the energy barriers are mainly determined by

the surface roughness or topography. However, as shown in

the inset in Fig. 4, each major energy barrier, e.g., from

point 1 to point 5, itself includes many small energy
30 40 50 60 70 80 90 100 110

∆F
 (

J)

-2.0e-5

-1.0e-5

0.0

1.0e-5

2.0e-5

3.0e-5

4.0e-5

θM (o)  
56 58 60 62

-2.0e-5

-1.9e-5

 

1
2

3

4

5

θM (º)

θr=30.5o

θa=105.5o

θES=55.08o

Fig. 4. Free energy change as a function of macroscopic contact angle for

a roughness-dominated surface. l =200 Am (>w1, w2), c =50 Am, h0=

30 Am, b =30-, a =45-, he1=50-, he2=70-, w1=w2=10 Am, d =1.1023,
H0=1600 Am.
barriers. These small energy barriers result from the weak

heterogeneity of the surface. To overcome a major energy

barrier, for example, from point 1 to point 5, the energy

needed is 1.8�10�6 J. To overcome a small energy barrier,

e.g., from point 1 to point 3, the energy required is

1.2�10�7 J. These results indicate that the energy required

to overcome a major energy barrier is around 15 times that

to overcome a small energy barrier. Therefore, the meas-

urable contact angles of the system, e.g., advancing and

receding contact angles, will be determined mainly by the

major energy barriers. The free energy curve also shows that

there are a number of metastable equilibrium configurations

or local minima within the contact angle range from 30.5- to
105.5-. The limiting angles, corresponding to the first and

the last local minima, represent the receding and advancing

contact angles of the system. There is a global minimum for

the system at hM=55.08-. This angle is the so-called system

equilibrium contact angle, hES.

Analysing and summarising the results discussed above

give the following relations for roughness-dominated

surfaces:

ha ¼ hC þ a ð15Þ

hr ¼ hC � b ð16Þ

coshES ¼ dcoshC ð17Þ

These equations can also be mathematically obtained from

the equations alone. As the strip width is much smaller than

the size of the rough bump, using the Cassie equation, Eq.

(13) can be approximated by

DF ¼ � LclvcoshCIs xð Þ

þ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � yð Þ2 þ x2

q
� H0

� �
ð18Þ

Differentiating DF gives

dDF

dx
¼ � LclvcoshCI

ds

dx
� LclvsinhM

dy

dx

þ LclvcoshM ð19Þ

The model surface configuration (Fig. 2) shows that the

possible values of dy / dx and ds / dx include 0 and 1, tan b
and 1 /cosb, and � tan a and 1 /cosa. Substituting these

values for dy / dx and ds / dx in Eq. (19), three values of hM
will satisfy dDF / dx =0:

hM ¼ hC ð20Þ

hM ¼ hC þ a ð21Þ

hM ¼ hC � b ð22Þ

The two hM’s in Eqs. (21) and (22) represent two local

minima of the free energy curve, corresponding to the

advancing (ha) and receding (hr) contact angles. Eqs. (21)
and (22) are in fact Eqs. (15) and (16). As for hM in Eq.



30 40 50 60 70 80 90

∆F
 (

J)
∆F

 (
J)

-4e-5

-3e-5

-2e-5

-1e-5

0

1e-5

66 68 70 72 74

-3.2e-5

-3.0e-5

-2.8e-5

-2.6e-5

-2.4e-5

(a)

(b)

1

2

3

θr=46.72o

θES=59.04o

θa=68.60o

θM (o)

Fig. 5. Free energy change as a function of macroscopic contact angle for a

heterogeneity-dominated surface with H0=3200 Am, l =10 Am (<w1, w2),

c =2 Am, h0=1.5 Am, b =20-, a =30-, he1=50-, he2=70-, w1=w2=100

Am. hC=60.5-. d =1.0666, hES=58.32-. (b) is part of (a) but on a much

smaller scale.

J. Long et al. / Advances in Colloid and Interface Science 118 (2005) 173–190 179
(20), its value is between hr and ha; on a free energy curve,

there is possibly a local minimum or maximum at which Eq.

(20) is satisfied.

If the surface under investigation is a rough but

homogeneous surface, then Eqs. (15) and (16) will reduce

to the forms first derived by Shuttleworth and Bailey (30):

ha=he+a and hr =he�b. Furthermore, if the surface has

symmetric peaks, then a =b and thus, ha=he+a and

hr =he+a, which have been widely explored by many

investigators ((8), (22), (30)–(34)).

To obtain the global minimum or the system equilibrium

contact angle, Eq. (18) can be further approximate under the

condition that H0 is large enough such that

DF ¼ � LclvcoshCIdIxþ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ x2
q

� H0

� �
ð23Þ

By satisfying dDF / dx =0, the following relation can be

obtained:

coshM ¼ dcoshC; ð24Þ

which is Eq. (17); hM in Eq. (24) represents the system

equilibrium contact angle.

Because |cos hM| is always less than or equal to 1, if |d
cos hC| in Eq. (17) or Eq. (24) is greater than 1, the system

will not have an equilibrium contact angle, or will have an

equilibrium contact angle of zero. This conclusion may

have an important practical application: by increasing

surface roughness, one can always have complete wetting

on the surface—an ultra-hydrophilic surface, regardless of

the surface material. In addition, Eq. (22) or Eq. (16) also

indicates that the receding contact angle will be negative if

hC<b. In this situation, the system will not have a

receding contact angle, or the receding contact angle

equals zero.
4. Heterogeneity-dominated surfaces

In the above section, we have presented and discussed

the results for a typical roughness-dominated surface. If the

characteristic size of heterogeneity of a surface is much

larger than the characteristic size of roughness, such a

surface is heterogeneity-dominated. A typical free energy

curve as a function of macroscopic contact angle for a

heterogeneity-dominated surface is shown in Fig. 5a. The

surface configuration is shown in Fig. 2 with w1=w2=100

Am and l=10 Am, where (w1+w2) / l=20; other parameters

are c =2 Am, h0=1.5 Am (<w1, w2), b =20-, a =30-,
he1=50-, he2=70-, d =1.0666, and hC=60.5-. Fig. 5a

shows that the free energy curve has a saw-toothed

structure, which is similar to that of an idealized heteroge-

neous surface (see Fig. A1-3 in Appendix A). This curve

gives ha=68.6- and hr =46.72-. Obviously, the two values

do not satisfy Eqs. (15) and (16). Based on a large number

of calculations for different cases, ha and hr on such
heterogeneity-dominated surfaces were found to satisfy the

following relations:

cosha ¼ dcos heð Þmax ð25Þ

coshr ¼ dcos heð Þmin ð26Þ

where (he)max and (he)min represent the maximum and mi-

nimum intrinsic contact angles, respectively, i.e., (he)max=

he2=70- and (he)min=he1=50- as shown Fig. 5. The curve

in Fig. 5a also gives the system equilibrium contact angle

hES=59.04-. This value is close to the one calculated from

Eq. (17), 58.32-. This indicates that for heterogeneity-

dominated surfaces, the system equilibrium contact angle

still satisfies Eq. (17). Another worth-noting point is that

each line segment of the saw-toothed structure shown in

Fig. 5a appears smooth. However, as shown by the curve on

a smaller scale in Fig. 5b, each line segment in fact contains

a number of small steps. Because the surface is hetero-

geneity-dominated, it is reasonable to conclude that the saw-

toothed structure (Fig. 5a) results from the heterogeneity

and that the small steps (Fig. 5b) come from the roughness.
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Fig. 5b also shows more local minima than those shown in

Fig. 5a. However, not all the local minima in Fig. 5b can be

observed as a metastable state. This is because the energy

barrier produced by such small steps is too small. For

example, if the system is in a state of stage 3 (Fig 5b), it is

very easy for the system to overcome the energy barrier and

to move to the adjacent state on its left side with a lower free

energy (One of the common driving forces for this process

is thermal fluctuations.) This procedure will continue until

the system comes to a state in stage 2. Within stage 2, the

local minimum at which hM=68.6- has the lowest free

energy when comparing to its adjacent states. This point

may represent a metastable state, and correspond to the

advancing contact angle of the system. If the system is at a

local minimum in stage 1, the system will move towards its

right side until the lowest free energy point in stage 1. This

point represents another metastable state that can be seen in

Fig. 5a.

Eqs. (25) and (26) can also be derived from the free

energy equations alone. The procedure is as follows:

Because the surface is heterogeneity-dominated, the size

of rough bumps is small, s(x) can be approximated as

s(x)�d˙x. In addition, the height of the bump is also quite

small comparing with H0, as a result, H0�y�H0. Thus,

Eq. (13) can be simplified as

DF ¼
Z x

0

� Lclvcoshe xð Þddxþ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ x2
q

� H0

� �
:

ð27Þ

Differentiating DF gives dDF / dx = -Lclvdcoshe(x) +
LclvcoshM. As he(x) can only be one of the two intrinsic

contact angles, two possible macroscopic contact angles

satisfying Eqs. (25) and (26) can be obtained by setting

dDF / dx =0.
5. Mixed rough-heterogeneous surfaces

In the preceding sections, we have discussed two special

types of rough, heterogeneous surfaces: roughness-domi-

nated and heterogeneity-dominated. However, if the char-

acteristic size of heterogeneity of a surface is neither much

smaller nor much greater than the characteristic size of its

roughness, we would have a mixed rough-heterogeneous

surface. In this section we present and discuss the results of

this type of surfaces in detail.

Fig. 6 shows a typical free energy curve for a general

rough, heterogeneous surface. The surface configuration

used for this figure is the general one shown in Fig. 2. In this

case, the length of a roughness unit is l=100 Am (the

corresponding surface length Lr=112.72 Am) and the length

of a heterogeneity unit, Lh, is 200 Am (Lh=w1+w2).

Although the shape of the free energy curve in Fig. 6

shows irregularity, some common features from this curve

can be found when compared with other free energy curves
discussed above. First, there are two plateaus (of a zero

slope) appearing on two sides of the curve. The left one is at

hM=25-, and the right one is at hM=115-. Between these

two values, there are a number of local minima, which

correspond to metastable states of the system. When hM is

less than 25- or greater than 115-, there is no local minima

any more. This indicates that 25- and 115- are the minimum

and maximum contact angles among possible contact angles

of the system. The two angles thus represent the receding

and the advancing contact angle, respectively, which can be

evaluated by

ha ¼ heð Þmax þ a ð28Þ

hr ¼ heð Þmin � b ð29Þ

These two equations can also be derived from the free

energy equations. Differentiating Eq. (13) gives

dDF

dx
¼ � Lclvcoshe xð Þ ds

dx
� LclvsinhM

dy

dx

þ LclvcoshM ð30Þ

For a general surface configuration shown in Fig. 2, there

are six possible combinations of he(x), dy / dx and ds / dx.

These are (he1, tanb, 1 / cosb), (he2, tanb, 1 / cosb),
(he1,� tana, 1 / cosa), (he2,� tana, 1 / cosa), (he1, 0, 1), and
(he2, 0, 1). Substituting for he(x), dy / dx and ds / dx in Eq.

(30) with the six groups of values and setting dDF / dx =0,

six possible values of hM are obtained: he1�b, he2�b,
he1+a, he2+a, he1, and he2. In the six values, the maximum

and minimum ones will represent the advancing and the

receding contact angles of the system. Thus, Eqs. (28) and

(29) are obtained.

The free energy curve in Fig. 6 also gives the system

equilibrium contact angle, hES=57.02-. With d =1.2728 and

hC=60.5-, the calculated value of hES from Eq. (17) is

56.29-. The two hES values are close; thus, Eq. (17) is still
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valid for mixed rough-heterogeneous surfaces. In fact, Eq.

(17) can also be derived from Eq. (13) for mixed rough-

heterogeneous surfaces. The derivation is the same as that

for roughness-dominated surfaces (Eqs. (18), (23) and (24)).
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Fig. 7. The contribution of DF1 and DF2 to DF. (a) a heterogeneity-

dominated surface: l =10 Am (bw1, w2), c =0 Am, h0=5 Am, a =b =45-,

w1=w2=100 Am, he1=35-, he2=85-, H0=1200 Am. (b) a roughness-

dominated surface: l =100 Am (Hw1, w2), c =0 Am, h0=50 Am,

a =b =45o, w1=w2=10 Am, he1=35-, he2=85-, H0=1200 Am. (c) a

mixed rough-heterogeneous surface: l =100 Am (¨w1, w2), c =0 Am,

h0=50 Am, a =b =45-, w1=w2=100 Am, he1=35-, he2=85-, H0=1200

Am. The surface configuration is shown in Fig. 3a.
6. Surface classification and surface feature factor

In the above three sections, we have discussed three

types of rough and heterogeneous surfaces: roughness-

dominated, heterogeneity-dominated, and mixed rough-

heterogeneous surfaces. Although qualitative descriptions

about the three types of surfaces have been provided,

quantitatively distinguishing them is desired. The results

presented in the preceding three sections show that the three

types of surfaces produce different advancing and receding

contact angles. Therefore, it is important to know which

type a surface under study belongs to.

Advancing and receding contact angles are the max-

imum and minimum among metastable state contact

angles. On a free energy curve, the receding and advancing

contact angles correspond to the first and the last local

minima, respectively. Eq. (6) shows that the free energy

change (DF) consists of two terms. One is due to changes

in solid–vapor and solid–liquid interfacial areas (DF1),

and the other due to a change in liquid–vapor interfacial

area (DF2). As expressed by Eq. (9), DF1 is related to

surface heterogeneity, whereas DF2 is directly related to

surface roughness but independent of surface heteroge-

neous, see Eq. (12). Therefore, DF1 represents the

contribution of surface heterogeneity to DF, while DF2

represents the contribution of surface roughness to DF.

Thus, the classification of surfaces may be made by

comparing DF1 and DF2.

Eqs. (9), (12) and (13) can be used to calculate DF1,

DF2, and DF, respectively. Fig. 7 presents several groups

of the results. The surface configuration used in Fig. 7 is

the one with isosceles triangles shown in Fig. 3a. To focus

on the effect of surface heterogeneity on DF1 the surface

length s(x), instead of x, is used as the horizontal co-

ordinate in Fig. 7. Fig. 7a is a case of the heterogeneity-

dominated surface. The three curves show that the curve

of DF1 has a saw-toothed structure, while the curve of

DF2 is almost smooth. The shape and the major steps of

the DF curve are determined by DF1. The minor steps of

the DF curve are due to DF2. Fig. 7b is a case of the

roughness-dominated surface. In this case, DF2 determines

the shape and the major steps of the DF curve, whereas

DF1 determines the minor steps of the DF curve. Fig. 7c

presents the results of a mixed rough-heterogeneous

surface. In this case, the shape of the DF curve is quite

irregular and is determined by a combination of DF1 and

DF2.

Fig. 8 gives a close look of Fig. 7c around s =0. The

grey, dash-dotted, and solid lines in Fig. 8 represent the

curves of DF1, DF2 and DF, respectively. At s =0 (point A),
the liquid front is at the reference state (hM=90-). When the

liquid front moves and goes to the next peak, DF2 changes

along curve ACB. If the liquid front moved over the same

distance as the surface length to the peak (Lr) on a smooth

surface, DF2 would change along the dotted straight line,

from point A to point B. Thus the area of the triangle ABC,

SABC, represents the free energy difference between the two

paths. Similarly, when the liquid front moves from a state,

e.g., point a, through a heterogeneity unit to point B, DF1

will change along curve acb. The dotted straight line ab

would represent the path of DF1 if the surface were

homogeneous. The area of triangle abc, Sabc, represent the

free energy difference between the two paths: imaginary and

real. Therefore, we propose a parameter using these two

triangle areas, i.e.,
ffiffiffiffiffiffiffiffiffi
SABC
Sabc

q
, for comparing the contributions of
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B. If the liquid front moves over the same distance on a smooth surface,

DF2 will change along the dotted straight line from point A to point B. Thus

the area of the triangle ABC, SABC, represents the ‘‘sum’’ of free energy
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SABC
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q
.
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DF2 and DF1 to DF. This parameter may be named the

surface feature factor, x. From Fig. 8 an expression for x
can be derived (see Appendix C for details):

x ¼ Lr IdT
LhIg

ð31Þ

where Lr is the actual surface length of a roughness unit, Lh

is that of a heterogeneity unit, and d* and g are the

roughness and heterogeneity parameters, respectively:

dT ¼ 1� 1

d2

� �1=4

ð32Þ

The value of dT changes from 0 to 1. For smooth surfaces,

dT=0. For extremely rough surfaces, d*Y1. For surfaces

consisting of two materials, g is expressed by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j coshe1 � coshe2ð Þ=2j

p
ð33Þ

The value of g also changes from 0 to 1. For a homogeneous

surface, e.g., he1=he2, g =0. For extremely heterogeneous

surfaces, e.g., he1=0 and he2=180-, g =1. For surfaces

containing multiple materials (e.g. N materials), the hetero-

geneity parameter between the ith and the jth materials is

defined as

gij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j coshei � coshej
� �

=2j
q

ð34Þ
and then the average heterogeneity parameter of the surface

is given by

g ¼ 1

N

XN
i¼1

gi;iþ1 ð35Þ

where i means the ith material (i =1,2, . . . ,N), and N +1

represents the first material (i =1).

The value of x could change from 0 to ”. For smooth

surfaces, x =0 whereas x =V for homogeneous surfaces.

By a great number of calculations for different values of x
and for different surface configurations, the relationship

between the surface feature factor, x, and surface classi-

fication, is found and shown in Fig. 9. This figure shows

that surfaces can be divided into three major categories:

heterogeneity-dominated surfaces (area I with x <0.1),

mixed rough-heterogeneous surfaces (area III with

0.2<x <2), and roughness-dominated surfaces (area V with

x >5). With each of the three categories, the advancing,

receding and system equilibrium contact angles can be

obtained. Between the three categories, there are two

transition regions (II and IV). In these two regions, the

advancing and the receding contact angles are not easy to be

determined. We tend to consider that they satisfy the

equations in area III. Fig. 10 also shows that the system

equilibrium contact angles can be expressed by the same

equation for all surfaces.
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7. Irregular surfaces

To analyze more general surface configurations than the

above regular model surface (Fig. 2), an irregular surface,

e.g., the one in Fig. 10, can be employed. The height at any

point of the irregular surface, y, is a function of x and can

still be generally described by Eq. (5). However, y(x) can be

any form of function so that it can represent an arbitrary

surface configuration. For surface heterogeneity, the intrin-

sic contact angle may change at any surface spot, and can be

described as a function of x with the form of Eq. (4).

For such an irregular surface as shown in Fig. 10, the tilt

angle, /, of the surface spot at point x, is defined as the

angle formed by the tangent and the horizontal x-axis at x.

For the surface segments indicated by ‘‘I’’, the tilt angle is in

the positive range of 0- to 180-; for these segments

indicated by ‘‘II’’, it has a negative value in the range from

�180- to 0-.

7.1. Roughness-dominated irregular surfaces

For roughness-dominated irregular surfaces, Eq. (19) can

be used. As dy / dx represents the slope of the surface profile

at x, suppose the tilt angle is / at this point, then

dy

dx
¼ tan/ ð36Þ

Mathematically, the increment of surface length, ds, in Eq.

(19) satisfies (ds)2= (dx)2+ (dy)2. Combining this relation

with the above equation gives

ds

dx
¼ 1

cos/
ð37Þ

Substituting Eqs. (36) and (37) into (19) and setting dDF /

dx =0, the following expression can be obtained

hM ¼ hC � / ð38Þ

The above equation shows that when the tilt angle has a

smallest value (/min), the corresponding contact angle will

be the largest. The smallest tilt angle can be obtained from

the surface segments ‘‘II’’ and should be a negative value.

This largest contact angle represents the advancing contact

angle:

ha ¼ hC � /min ð39Þ

The above equation shows that for a roughness-dominated

irregular surface, the advancing contact angle is determined

by the smallest tilt angle of the surface and the Cassie

contact angle.

Similarly, when the tilt angle has a largest value (/max),

the corresponding contact angle will be the smallest. The

smallest tilt angle can be obtained from the surface segments

‘‘I’’ and have a positive value. Then, receding contact angle

can be expressed by

hr ¼ hC � /max ð40Þ
which shows that the receding contact angle is determined

by the maximum tilt angle of the surface and the Cassie

contact angle. Eqs. (39) and (40) will become the same as

Eqs. (21) and (22) for the surface configuration shown in

Fig. 2. From Eqs. (39) and (40), the contact angle hysteresis

can be expressed by

DhH ¼ /max � /min ð41Þ

This equation indicates that for roughness-dominated irreg-

ular surfaces, contact angle hysteresis is only determined by

the surface topography (the maximum and minimum tilt

angles) but independent of surface heterogeneity.

7.2. Heterogeneity-dominated irregular surfaces

For heterogeneity-dominated irregular surfaces, although

Eqs. (25) and (26) were derived on the basis of the model

surface that contains only two alternating materials strips,

they can be applied to surfaces with any number of different

material strips. The derivation is the same as that in Section

4. Contact angle hysteresis for heterogeneity-dominated

irregular surfaces can then be obtained as

DhH ¼ arccos dcos heð Þmax

� �
� arccos dcos heð Þmin

� �
ð42Þ

which shows that the contact angle hysteresis is determined

by the maximum and minimum intrinsic contact angles as

well as the surface roughness factor. In this case, the surface

tilt angles, i.e., /, do not have a direct effect on the contact

angle hysteresis.

7.3. Mixed rough-heterogeneous irregular surfaces

For mixed rough-heterogeneous irregular surfaces, com-

bining Eq. (30) with Eqs. (4) and (5) and setting dDF / dx =0

give

hM ¼ he � /: ð43Þ

When he has its maximum, (he)max, and / its smallest value,

/min, hM will have a maximum value:

hmax ¼ heð Þmax � /min ð44Þ

However, because for a mixed rough-heterogeneous irreg-

ular surface, (he)max and /min may not appear at the same

surface spot, this hmax may not exist. Therefore, it only

represents the upper limit of possible contact angles. The

advancing contact angle, ha, is equal to or smaller than hmax.

Similarly, when he has a minimum, (he)min, and / has a

largest value, /max, hM will have a minimum value:

hmin ¼ heð Þmin � /max ð45Þ

hmin will represent the lower limit of possible contact

angles, rather than the receding contact angle because

(he)min and /max may not appear at the same surface spot.

The receding contact angle, hr, is equal to or larger than

hmin.
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With Eqs. (44) and (45), the upper limit of the contact

angle hysteresis for mixed rough-heterogeneous irregular

surfaces can be obtained

DhH;max ¼ heð Þmax � heð Þmin þ /max � /min: ð46Þ
This equation shows that both the maximum and

minimum intrinsic contact angles and the surface top-

ography will determine the upper limit of the contact angle

hysteresis.
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Fig. 11. Comparison between the theoretical predictions (lines) and the

experimental results (symbols) of Katoh et al. [34]. The surface config-

uration is shown in the inset. It consists of regular grooves with a tilt angle,

/. Open symbols: advancing contact angle. Filled symbols: receding

contact angle. Solid lines: advancing contact angles obtained from Eq. (39).

Dotted lines: receding contact angles obtained from Eq. (40).
8. Comparison with experimental results

Miller et al. [32] measured the advancing and receding

contact angles of water on vacuum-deposited polytetralfluro-

ethylene (PTFE) thin films using a sessile drop method. The

advancing contact angle they obtained on a film (deposited

on a glass plate) is 146-. They also used atomic force

microscopy (AFM) to image the surface and found that the

surface was rough (mean roughness Ra=83.6 nm). The tilt

angle (/) of the surface obtained by a section analysis on the

image was 50-. Such a surface can be considered as a rough

but homogeneous surface. Eq. (39), ha=hC�/min, should

be applicable where the Cassie contact angle equals the

intrinsic angle (he) of the PTFE film, which is 95- [33], and
/min is equal to �50-. Thus, we obtain ha=hC�/min=

he+/ =145�146- (measured value). This indicates the

prediction from Eq. (39) agrees with the measured value.

The receding contact angle that Miller et al. [32] obtained

on the PTFE surface is 60-. They found that the previous

theories [2,3,7–9] did not provide a good prediction on the

receding contact angle. Using symmetric roughness peaks,

these theories obtained hr =he�/ =45-. However, the

present study shows that the advancing and receding contact

angles are determined by different tilt angles (see Eqs. (39)

and (40)). Because of the possible asymmetry of the surface,

the tilt angle, 50-, that they obtained on one side of the peak,
may not be applicable to the receding angle. From Eq. (40),

hr =hC�/max, we estimated that the tilt angle on the other

side of the peak could be /max=he�hr =95�60=35- if the
peaks are indeed unsymmetrical. This shows that our model

provides a possibility to explain the measured receding

contact angle.

Katoh et al. [34] measured the advancing and receding

contact angles of water and ethanol–water solutions on a

series of surfaces with regular grooves (see the inset of Fig.

11). The results of both advancing and receding contact

angles as a function of the groove angle, /, are presented in

Fig. 11. Their experimental results showed that ha (hr)
increased (decreased) linearly with /. To fit the results, they

employed the following relations [6,9]: ha=he+/ and

hr =he�/ for advancing and receding contact angles.

These two equations give ha=hr if the surfaces were

smooth, i.e., / =0-. However, by extrapolating the results

to / =0-, they found that hamhr. Then they modified these

two equations with a parameter b: ha=he+/ +b and
hr =he�/�b for advancing and receding contact angles,

respectively. Here b represents the effect of the so-called

‘‘infinitesimal roughness’’ [34]. A problem arises from their

modification: as b was only a property of the surface, it

should be independent of the liquids used to measure the

contact angles. However, they obtained different values of b
for different liquids.

To explain this situation, the surface could be considered

to be heterogeneous. Such heterogeneity may result from the

orientation and/or physical status of the surface molecules.

Thus, the surface can be treated as a mixed rough-

heterogeneous surface. As a result, the advancing and

receding contact angles can be expressed by

ha ¼ hmax ¼ rmax � /min ¼ heð Þmax þ / ð47Þ

hr ¼ hmin ¼ heð Þmin � /max ¼ heð Þmin � / ð48Þ

For smooth but heterogeneous surfaces (/ =0), these two

equations can be reduced to ha= (he)max and hr = (he)min.

Thus, we can obtain hamhr at / =0. In fact, if we suppose

(he)max=he+b and (he)min=he�b, our Eqs. (47) and (48)

will become the same as the expressions suggested by Katoh

et al. [34]. However, here b will not represent the effect of

the ‘‘infinitesimal roughness’’. Instead, it represents the

change of intrinsic contact angle due to the surface

heterogeneity. Consequently, b is dependent on the liquid

used. This is consistent with the experimental results. Thus,

our explanation seems more reasonable than the modifica-

tion based on the effect of the ‘‘infinitesimal roughness’’.



20 40 60 80 100

20

40

60

80

100

θES, exp

θES, exp

20 40 60 80 100

θ E
S,

 c
al

 (
eq

. 4
9)

θ E
S,

 c
al

 (
eq

. 1
7)

20

40

60

80

100
(a)

(b)

R2=0.9784

R2=0.8910

Fig. 12. Comparison of measured system equilibrium contact angles with

the calculated values. (a) Eq. (49) was used. (b) Eq. (17) was used.

J. Long et al. / Advances in Colloid and Interface Science 118 (2005) 173–190 185
However, it cannot be excluded that the adsorption of the

solution on the surface and/or other unknown factors may

play a role in the observed inconsistence.

Eqs. (47) and (48) can be used to fit the data in Fig. 11.

The lines in Fig. 11 gives (he)max and (he)min: 86- and 27-
for water, 69- and 17- for ethanol–water solution (15%),

and 27- and 0- for ethanol–water solution (30%). Thus, the

advancing and receding contact angles can be expressed by,

e. g., ha=86+/ and hr =27�/ for water. Fig. 11 shows

that the theoretical predictions from Eqs. (47) and (48) agree

well with the experimental results.

The third experimental comparison is related to system

equilibrium contact angles, which can be generally

expressed as a function of surface roughness factor and

the Cassie contact angle by from Eq. (17). However, in the

literature, the following relation was used to calculate the

system equilibrium contact angles [35–38]:

coshES ¼ coshA þ coshr
2

ð49Þ

From the quantitative analyses of advancing/receding

contact angles, such a relation cannot be derived. However,

the above equation, or even a simpler expression [34]

hES ¼ hA þ hrð Þ=2 ð50Þ
has been used to calculate the system equilibrium contact

angle. Eqs. (49) and (50) are empirical relations at best.

Della Volpe et al. [37,38] developed a simple exper-

imental device to measure system equilibrium angles.

Andrieu et al. [36] also measured the system equilibrium

angles on various surfaces. By modeling the surfaces, these

researchers studied roughness-dominated surfaces with

isosceles triangles, the advancing and receding contact

angles can be expressed as

ha ¼ hC þ / ð51Þ

hr ¼ hC � / ð52Þ

where / denotes the surface tilt angle, from which the

surface roughness factor can be obtained: d =1 /cos /. From

the experimental results of advancing and receding contact

angles, hC and d can be obtained with the above two

equations. Then, with Eq. (17), the system equilibrium

contact angle can be calculated.

Comparing the experimental results of hES with the

predicted values from Eqs. (49) and (50) shows that hES

from Eq. (17) agrees with hES, exp better than that from Eq.

(49) (see Fig. 12). In Fig. 12b all points are in a very

narrow region around the bisecting line, with a R-squared

value (R2) of 0.9784 and an average error of 5.36%

( 1
N
~ jhES;exp�hES;calj

hES;exp
). This indicates that the results from Eq.

(17) are in a good agreement with the experimental

results. Comparatively, the points in Fig. 12a are much

more scattered with R2=0.8910 and an average error of

11.26%.
9. Conclusions

This paper presents a preliminary study of the thermody-

namics of contact angles on rough, heterogeneous surfaces.

The following conclusions can be drawn:

Rough, heterogeneous surfaces were successfully mod-

elled by considering a two-dimensional regular model

surface containing trapezoidal bumps and alternating

material strips. This model surface was further extended to

irregular surfaces. Advancing, receding and system equili-

brium contact angles were quantitatively correlated to

surface topography, roughness and heterogeneity. The

contact angles theoretically predicted by these quantitative

relations agree well with the experimental results found in

the literature. To our best knowledge, this is the first

thermodynamic modelling of contact angles on rough and

heterogeneous surfaces.

A parameter named surface feature factor (x) was

defined to classify surfaces into three categories: rough-

ness-dominated, heterogeneity-dominated and mixed-rough-

heterogeneous. For roughness-dominated surfaces, contact

angle hysteresis is independent of surface intrinsic contact

angles but determined by the maximum and minimum

surface tilt angles: DhH=/max�/min. For heterogeneity-
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dominated surfaces, contact angle hysteresis is determined

by the surface roughness factor and the maximum and mi-

nimum intrinsic contact angles: DhH=arccos(dcos(he)max)�
arccos(dcos(he)min). For mixed rough-heterogeneous sur-

faces, both surface topography and heterogeneity contribute

to the upper limit of contact angle hysteresis: DhH, max=

(he)max� (he)min+/max�/min. These statements are true for

both regular and irregular surfaces.

System equilibrium contact angles, hES, are independent

of surface categories and can always be expressed by

coshES =dcoshC. This expression can be reduced to

hES=hW (the Wenzel contact angle) for rough but homoge-

neous surfaces, and hES=hC (the Cassie contact angle) for

heterogeneous but smooth surfaces.

Nomenclature
a1, a2 surface area fraction of material 1, 2 such that

a1+a2=1

b length of the smooth portion of a repeat unit in Fig.

1

c length of the top side of a trapezoidal bump in Fig.

1

h0 height of a trapezoidal bump in Fig. 1

H length of a liquid front

H0 length of a liquid front at the reference state

l planar length of a repeated roughness unit contain-

ing a trapezoidal bump in Fig. 1

L liquid front width

Lh length of a heterogeneity unit

Lr non-planar length of a roughness unit,

N number of surface materials

s non-planar length variable of a rough surface

Sabc area of the triangle abc in Fig. 8

SABC area of the triangle ABC in Fig. 8

x horizontal coordinate

y vertical coordinate

w1, w2 width of material strip 1, 2

ha advancing contact angle

hC Cassie contact angle

he intrinsic contact angle

hES system equilibrium contact angles

hM macroscopic/apparent contact angle

hr receding contact angle

hW Wenzel contact angle

hY Young contact angle

(he)max Maximum intrinsic contact angle

(he)min Minimum intrinsic contact angle

/ Surface tilt angle formed by the tangent at surface

spot x and the x-axis

clv surface tension of a liquid

csl interfacial tension between a solid and a liquid

csv interfacial tension between a solid and a gas

d roughness factor: the ratio of the actual surface area

to the corresponding geometrically projected area

a, b geometric angles of the trapezoid in Fig. 1

x surface feature factor
d* roughness parameter

g average heterogeneity parameter of a surface

gij heterogeneity parameter between materials i and j

DF free energy change of a system

DF1 free energy change due to a change in solid–vapor

and solid–liquid interfacial areas

DF2 free energy change due to a change in liquid–

vapor interfacial area.
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Appendix A. Validation of the model

To validate our model, the free energy curves for several

specific model surfaces were obtained. These surfaces

included the ideal smooth and homogeneous surface, the

idealized rough but homogeneous surface, and the idealized

heterogeneous but smooth surface. The results were

compared with the results obtained by Neumann and

coworkers [2,3,9].

A.1. Ideal smooth and homogenous surfaces

When we set he1=he2 and a =b =0, the model surface in

Fig. 1 becomes a smooth and homogeneous surface, which

has been conventionally identified as an ideal surface. For

such an ideal surface, the Young equation should be

satisfied and there exists only one contact angle, which is

the Young equilibrium contact angle, or the intrinsic contact

angle of the system. By rewriting Eqs. (9) and (10) for such

an ideal surface, we obtain

DF ¼ � Lclvcoshexþ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ x2
q

� H0

� �
ðA1� 1Þ

tanhM ¼ H0

x
ðA1� 2Þ

From the above two equations, the free energy change of the

entire system, DF, as a function of the macroscopic contact

angle, hM, can be computed. For these calculations, we set

H0=1200 Am. A series of plots of DF versus hM with

different he are shown in Fig. A1-1. From this figure, it can

be seen that each plot is a smooth curve with a minimum DF

point. The minimum is at hM=he. These plots indicate that

for an ideal surface there is only one stable contact angle,
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the intrinsic or Young equilibrium contact angle. The

minimum DF point, in fact, can be directly obtained by

taking the derivative of DF from Eq. (9):

dDF

dx
¼ � Lclvcoshe þ Lclv

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ x2
p

¼ � Lclvcoshe þ LclvcoshM ðA1� 3Þ

At the minimum point, dDF / dx =0, we obtain hM=he. This
result shows that the model is valid for ideal surfaces.

Similar plots of free energy change for such ideal surfaces

were obtained by Eick et al. [9].

A.2. Idealized rough but homogeneous surface

As stated in the Introduction section, the idealized rough

but homogeneous surface proposed by Eick et al. [9]

consists of isosceles triangles. In order to have the same

surface configuration, we can set a =b and c =b =0 in our

model surface. This surface configuration is shown in Fig. 3

(a). To compare our results with those of Eick et al. [9], we

set a =b =45-, h0=100 Am, and he=70-. These settings are
the same as those used in Fig. 14 of Ref. [2]. The results of

free energy change as a function of macroscopic contact

angle are shown in Fig. A1-2. This free energy curve is

similar to that of Fig. 14 in Ref. [2]. From Fig. A1-2, we

note that there exist many metastable states for such an

idealized rough surface. From left to right, the first

metastable state occurs at hM=25- and the last occurs at
hM=115-. These two contact angles are the minimum and

the maximum of the possible contact angles of the system,

which correspond to the receding and the advancing contact

angles, hr =25- and ha=115-, respectively. In addition, from

the values of the advancing and receding contact angle we

find that the advancing and receding contact angles are

related to the geometry of the surface and the intrinsic

contact angle of the system:

ha ¼ he þ a ðA1� 4Þ

hr ¼ he þ a ðA1� 5Þ

By setting dDF / dx =0, we can obtain the above two

relations from our model equations as follows. Rewriting

Eq. (9) for the idealized rough surface, we obtain

DF ¼ � Lclvcoshe
x

cosa
þ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � yð Þ2 þ x2

q
� H0

� �
ðA1� 6Þ

and then

dDF

dx
¼ � Lclvcoshe

1

cosa
� LclvsinhM

dy

dx
þ LclvcoshM

ðA1� 7Þ

There are two possible values for dy / dx, either tana or

� tana. By satisfying dDF / dx =0, we can obtain Eqs.

(A1Q4) and (A1-5) from Eq. (A1-7).

Another point that we note from the curve in Fig. A1-2

is that the system exhibits a global minimum, which

represents the system equilibrium contact angle, hES. The

value of hES is approximate/equal to the Wenzel contact

angle of the system, hW. It has been mathematically proven

[13] that the hW becomes an excellent approximation to

the hES when the size of the drop becomes very large



J. Long et al. / Advances in Colloid and Interface Science 118 (2005) 173–190188
compared with the scale of roughness. This conclusion can

also be proved by our model. When H0 is large enough

compared with roughness scale, Eqs. (A1-1)–(A1-6) can

be approximated as:

DF ¼ � Lclvcoshe
x

cosb
þ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ x2
q

� H0

� �
ðA1� 8Þ

Differentiating the above equation and applying dDF /

dx =0 at the global minimum point, we obtain

coshM ¼ coshES ¼ dcoshe ðA1� 9Þ

Comparing the above equation with the Wenzel equation,

we obtain hES=hW.

A.3. Idealized heterogeneous but smooth surface

If we set a =b =0-, the model surface in Fig. 2 becomes

an idealized heterogeneous but smooth surface. Such a

heterogeneous surface consists of alternating materials

strips of equal width. To compare our results with those

of Eick et al. [9], we set he1=40-, he2=30-, strip width

w1=w2=100 Am, and H0=1400 Am. The free energy

change of the system is shown in Fig. A1-3. The free

energy curve is similar to that of Eick et al. [9]. There are

two points that should be noted from the curve. First, it

exhibits a saw-tooth structure, which includes many local

minimum points. Each local minimum represents a

metastable state. Similar to that of an idealized rough

surface, the first and the last metastable states will

correspond to the receding and the advancing contact

angles, 30- and 40-, respectively. Therefore, this curve

predicts contact angle hysteresis. Second, it shows a global

minimum point, at which the system reaches its equili-

brium state with a contact angle hES=34.35-. This system

equilibrium contact angle is close to the Cassie contact

angle of the system, hC (=35.31-).
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Mathematically, we can obtain the advancing, the

receding, and the system equilibrium contact angles directly

from our model equations for such an idealized heteroge-

neous surface. In this case, Eq. (14) can be replaced by Eq.

(A1-2) and Eq. (9) can be simplified as

DF ¼
Z x

0

� Lclvcoshe xð Þdxþ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ X 2

q
� H0

� �
ðA1� 10Þ

The derivative of DF can be expressed by

dDF

dx
¼ � Lclvcoshe xð Þ þ LclvcoshM ðA1� 11Þ

The system has two intrinsic contact angles, he1 and he2. At

the first and the last local minimum points, dDF / dx =0 must

be satisfied. From Eq. (A1-11), we will obtain either

hM=he1 or hM=he2. These two angles represent the

advancing and receding contact angles.When H0 is great

enough, combining with Cassie equation, we can approx-

imate Eq. (A1-10) as

DF ¼ � LclvcoshcIxþ Lclv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ x2
q

� H0

� �
ðA1� 12Þ

By differentiating the above equation and applying dDF /

dx=0 at the global minimum point, we obtained hES=hC.
From the above discussion, we conclude that our model

is as efficient as the existing model for these specific

surfaces.
Appendix B. Effect of the Liquid Front Length (H0)

To what extent the assumption of liquid front is still valid

when considering the characteristic size of surface rough-

ness and/or heterogeneity? In this appendix, we try to

answer this question and present the results showing the

effect of the liquid front length (H0).

Fig. A2-1 shows the free energy curves obtained at

different values of H0. For the same idealized rough but

homogeneous surface as used in Fig. A1-2, which contains

isosceles triangles with a width of 200 Am, three free energy

curves were obtained at H0=500, 1000, and 2000 Am,

respectively. The three curves are shown in Fig. A2-1(a),

from which one can see that all the advancing contact angles

are the same (115-) while all the receding contact angles

equal 35-. The advancing and receding angles satisfy Eqs.

(A1-4) and (A1-5), respectively. This indicates that the

value of H0 does not affect advancing and receding contact

angles even when a value close to the size of the roughness

peaks, e.g., 500 Am was used. However, the system

equilibrium contact angle obtained at H0=500 Am is 53-,
far away from the predicted value of 61.1- by Eq. (A1-9).

When larger H0 was used, the system equilibrium contact

angles obtained, 61- at H0=1000 Am and 60- at H0=2000

Am, are very close to the predicted value. This indicates that
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to obtain a system equilibrium contact angle close to the

theoretical one, a value of H0 much larger than the size of

roughness peaks must be used.

Fig. A2-1(b) shows three free energy curves for the same

idealized smooth but heterogeneous surface as used in Fig.

A1-3. This surface contains two materials with he1=40- and
he2=30- and strip width w1=w2=100 Am. Similar to the

case of Fig. A2-1(1), the advancing and receding contact

angles obtained are independent of the H0 values used. The

system equilibrium contact angles obtained are 35.2, 34.4,

and 34.8- for H0=600, 1400, 2400 Am, respectively. These

values are all close to the Cassie contact angle, 35.3-. As he1

and he2 are quite close to each other, it is reasonable that the

obtained equilibrium angles seem to be independent of the

H0 used. However, our calculations for other cases show

that a larger H0 must be used in order to obtained a

equilibrium angle close to the theoretical one.
Appendix C. Derivation of the surface feature factor

As shown in Fig. 8, the area of triangle ABC, SABC,

which represents the ‘‘sum’’ of free energy DF2 for the
liquid front to move over a peak due to net roughness effect,

can be expressed by

SABC ¼ �
Z x1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � yð Þ2 þ x2

q
� H0

� �
dx

,� hcosbI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 � hsinbð Þ2 þ hcosbð Þ2

q
� H0

� �

¼ � hcosbIH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2hsinb

H0

þ h

H0

� �s
2

� 1

 !

,� hcosbIH0 1� 1

2
I
2hsinb
H0

� 1

� �
¼ h2cosbsinb ðA2� 1Þ

where x1 is the projected length of a roughness unit in the

axis of x and h is the length of the side of the triangle.

Similarly, to calculate the area of triangle abc Sabc, in Fig.

8, which represents the ‘‘sum’’ of free energy term, DF1, for

the liquid front to move over a heterogeneity unit, we can

shift the co-ordinate so that at point a, s =0, and then Sabc
can be expressed by

Sabc ¼
Z x2

0

Z s

0

� coshe xð Þds
� �

dx

�
Z x2

0

� coshe1W1 þ coshe2W2

cosb w1 þ w2ð Þ

� �
dx

¼ S 1ð Þ þ S 2ð Þ ðA2� 2Þ

where x2 is the projected length of a heterogeneity unit in

the axis of x, and S(1) and S(2) are the first and second

integration items, respectively. S(1) and S(2) can be

obtained by

S 1ð Þ ¼ �
Z w1cosb

0

coshe1
x

cosb
dx�

Z w1þw2ð Þcosb

w1cosb

� w1coshe1 þ coshe2
x

cosb
� w1

� �
 �

dx ¼ � cosb
2

coshe1w
2
1 þ coshe2w

2
2 þ 2coshe1w1w2

� �
ðA2� 3Þ

S 2ð Þ ¼
Z w1þw2ð Þcosb

0

coshe1w1 þ coshe2w2

cosb w1 þ w2ð Þ x

� �
dx

¼ cosb
2

coshe1w
2
1þcoshe2w

2
2þ coshe1þcoshe2ð Þw1w2

� �
ðA2� 4Þ

Substitute the above two equations into Eq. (A2-2), we

obtain

Sabc ¼
cosb coshe2 � coshe1ð Þw1w2

2
ðA2� 5Þ
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If the two material strips have the same width, i.e.,

w1=w2=w, the above equation can be rewritten as

Sabc ¼
cosb coshe2 � coshe1ð Þw2

2
ðA2� 6Þ

Based on the definition of surface feature factor x, using

Eqs. (A2-1) and (A2-6), we obtain

x ¼
ffiffiffiffiffiffiffiffiffiffiffi
SABC

Sabc

r
¼ hI

ffiffiffiffiffiffiffiffiffi
sinb

p

wI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j coshe1 � coshe2ð Þ=2j

p
¼ Lr 1� cos2bð Þ1=4

LhI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j coshe1 � coshe2ð Þ=2j

p ¼ Lr IdT
LhIg

ðA2� 7Þ

where Lh is the length of a heterogeneous unit, e. g. w1+w2

(w =Lh /2), Lr is the non-planar length of a rough unit, e.g.

for a isosceles triangle Lr =2h, d* is a roughness parameter,

g is the heterogeneity factor of the two materials. d* and g
can be respectively expressed by

dT ¼ 1� 1

d2

� �1=4

ðA2� 8Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j coshe1 � coshe2ð Þ=2j

p
: ðA2� 9Þ
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