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Abstract

An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore
network models of capillary pressure–saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static
displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not
easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and
corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging,
is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain
geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition.
The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body
imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The
method gives quantitative agreement with measurements and with other theories and computational approaches.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

When two immiscible fluids are in contact with a solid sur-
face, the interface between the fluids supports the pressure dif-
ference (capillary pressure) pc = pnw − pw = 2σC where C

denotes mean interface curvature, σ denotes surface tension and
pnw and pw denote pressures in non-wetting and wetting phases
respectively [1]. In quasi-static displacement of one fluid by an-
other through a porous medium, we can thus model fluid–fluid
interfaces as constant mean curvature surfaces. The extremely
irregular geometry of natural porous media, however, makes it
difficult to evaluate surface curvature values and corresponding
geometric configurations of the two fluids. The analytical de-
scription of the interface (and its curvature) is known only in
very specialized cases such as the capillary tube of radius r ,
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C = (cos(θ)/r), where θ denotes the contact angle the two flu-
ids form with the surface.

Simulations of fluid displacement in the actual porous
medium geometry are extremely computationally demanding,
and the most common up-scaling method employs a network
of geometrically simplified pores (openings) and throats (con-
strictions). A priori predictions of macroscopic behavior are
possible when the network is physically representative of the
real medium. For instance, a dense random packing of spheres
(e.g., Finney pack) is a simple model of granular media that
captures some key geometric and topological features of pore
space [2,3]. The pore throat network of such packings is readily
available via Delaunay tessellation (Fig. 1a).

Drainage (imbibition) simulations require a criterion for
which an invading fluid occupies each throat (pore) in the net-
work, usually in the form of the critical curvature above (be-
low) which the throat (pore) is drained (imbibed). The first
attempt to define critical curvature for imbibition was made
by Haines [4], CH = (2/Rin), where Rin is the radius of the
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Fig. 1. (a) A tetrahedral cell resulting from Delaunay tessellation of the Finney
pack. Centers of the neighboring spheres are marked A, B, C, D. Each tetra-
hedral cell defines a pore body in the pack, and its sides define pore throats.
(b) The simplest configuration of fluids in a non-imbibed pore [11]. A menis-
cus between wetting and non-wetting phases has reached a stable position (at
given curvature) in the pore throat formed by lower three grains, and its shape
is assumed spherical. A pendular ring of wetting phase is supported at the con-
tact of upper and rear grains. Pendular rings have the shape of a nodoid, i.e. a
free surface of constant mean curvature between two spheres. At some smaller
value of curvature the meniscus and ring will come into contact. At that mo-
ment, the two previously distinct menisci merge, become unstable and the pore
will become filled with the wetting phase.

maximal sphere inscribed into the pore body. Various empiri-
cal corrections to this formula were proposed [5,6]. Jerauld and
Salter [5], for instance, observed that a pore is more likely to
be imbibed at higher curvature if it has more imbibed neigh-
bors. Thus they proposed the critical pore imbibition curvature
as CJS = (CH/NNW) where NNW denotes the number of pores
connected to the given pore which contain NW phase.

Haines also proposed that the critical curvature for drainage
of a throat corresponds to a locally spherical meniscus inscribed
in the throat. Mayer–Stowe–Princen theory [7–10] provides a
rigorous alternative for 2D throats, however a 3D approach has
not yet been fully developed.

Gladkikh and Bryant [11] implemented a dynamic, purely
mechanistic set of criteria for imbibition following Melrose
[12]. The idea is topological and geometrical: when two sepa-
rate menisci come into contact within the pore, they merge and
the resulting instability causes the pore to imbibe. To implement
this criterion, [11] idealized the interfacial surface as locally
spherical in a pore throat. Imbibition proceeds by incremen-
tal decrease in curvature (equivalent to reducing pressure) and
re-computation of pore level events. As illustrated in Fig. 1b,
however, simulating the topological changes of the interface,
such as splitting and merging fronts, is nontrivial, even with
spherical idealizations. We are, therefore, very interested in a
method that liberates us from the spherical interface assump-
tions in order to fully utilize the known pore/throat geometry
for the Melrose criterion. It is also desirable that the method be
applicable to more realistic grain shapes.

Surface Evolver [13] is an energy minimization approach
for simulation of liquid surfaces shaped by various forces. In a
porous medium imbibition simulation, at each curvature decre-
ment the software adjusts surface vertex positions to achieve
equilibrium. Hilden and Trumble [14] used Surface Evolver to
determine the capillary pressure required to displace a liquid in
a planar array of hexagonally packed spheres. Although Surface
Evolver simulation of critical curvatures in pore level events
(rupture and coalescence of pendular rings) in our labora-
tory [15] agreed with theoretical predictions, topology changes
such as the merger of three pendular rings shown in Fig. 2 have
to be handled manually (e.g., the user has to remove the vertex
at a pinch point).

In this paper we explore the applicability of the level set
method for robust determination of critical curvatures (equiva-
lently, pressures) for throat drainage and pore imbibition events
in a wide range of microscale geometries. While some work
has been done for minimal surfaces in porous media [16], to
our best knowledge this is a novel application of the level set
method. While the method can be used to model dynamic inter-
face movement, we are presently concerned only with pseudo-
static displacements. Thus we seek only asymptotic (steady-
state) solutions to the level set model equation. The results
Fig. 2. Surface Evolver simulation [15] of constant curvature surfaces at decreasing values of curvature. Initial configuration (left) consists of pendular rings (in
different colors) around 3 neighboring spheres (spheres not shown). With curvature gradually decreasing, wetting phase rings touch, merge, and coalesce. This
sequence of events corresponds to “snap-off” of the non-wetting phase that previously occupied the pore throat between the three spheres.
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presented in this paper show sequences of these asymptotic
solutions at different values of imposed pressure. When suc-
cessive pressures vary slightly, often the successive solutions
also vary slightly. A large difference in the solutions is an indi-
cation that a critical event has occurred. Our method finds the
curvature associated with such events.

2. Materials and methods

The level set method [17,18] was introduced by [19] for
tracking evolution of interfaces under potentially complex mo-
tions. We introduce the method briefly. Assume an interface that
moves normal to itself at speed F , and let this moving surface
of interest be embedded as the zero level set of function φ(�x, t),
i.e. the set of points �x such that φ(�x, t) = 0 at all times t . If we
want to track the motion of a particle �x(t) on the interface, then
the differentiation with respect to time of the equation

(1)φ
(�x(t), t

) = 0

leads to

(2)φt + ∇φ
(�x(t), t

) · �x′(t) = 0.

Let �n = (∇φ/|∇φ|) be the outward normal of the interface,
then �x ′(t) = F �n. This yields the governing PDE

(3)φt + F |∇φ| = 0, φ(�x, t = 0) given.

The numerical solution is built upon hyperbolic conserva-
tion laws and parabolic techniques. The method works for any
dimension and handles topology changes naturally which has
resulted in a vast number of applications including two-phase
compressible flow, grid generation, computer vision, image
restoration, minimal surfaces and surfaces of prescribed curva-
ture.

For our two-dimensional simulations we have extensively
used Toolbox of Level Set Methods [20] which we briefly in-
troduce here. The toolbox provides a collection of algorithms
and examples (mainly from [18]) implemented in Matlab for
solving various forms of the level set method PDE on fixed,
structured Euclidean grids. Numerical treatments of Eq. (3)
provided in the toolbox are as follows: (i) Upwinding for the
hyperbolic term (the first order, the second and third ENO and
the fifth order WENO schemes), (ii) central differencing for the
mean curvature (parabolic) term, and (iii) Euler (the first order)
or Runge–Kutta methods (orders 2, 3 and 5) for time discretiza-
tion.

For the three-dimensional code Level Set Method Li-
brary [21] has been used. It also contains above-mentioned
collection of algorithms and is written in C/C++/Fortran thus
allowing for a faster execution. Furthermore, while we have
used only the serial part of LSMLIB, the library provides sup-
port for parallel applications. We have extensively used Condor
[22] which provides a queuing and scheduling mechanism for
running serial applications on a network of workstations.

2.1. Signed distance function construction

There are infinitely many level set functions that can de-
scribe a region Ω (or its boundary δΩ) occupied by a phase
of interest. Signed distance function for the interface δΩ at a
point �x is merely the distance from �x to the closest point of
δΩ , with a sign reflecting whether �x is inside or outside Ω .
The signed distance function is a preferred level set function
because of its numerical stability [18]. Determining a signed
distance function for analytically described interfaces such as
spheres and cylinders is trivial. The fast marching method is an
attractive numerical method for computation of signed distance
function for an arbitrary interface [17].

Even if initialized as such, φ will not remain a signed dis-
tance function as the interface evolves. Steepening and flatten-
ing of gradients of φ can introduce considerable numerical error
when computing first and second order derivatives. It has been
suggested to reinitialize the level set function (i.e. replace it
with a signed distance function that has the same zero level set)
at least periodically throughout the simulation [23]. Reinitial-
ization is a nontrivial effort (for an overview refer to [18] and
references therein), but we find it essential for our application.

Normal velocity F in our application is obtained from a bal-
ance of pressure and surface tension forces and is defined only
at the interface. For points off the interface, however, we still
use the same velocity model (and thus trivially extend the ve-
locity field). The work of [24] describes an efficient algorithm
for extension velocities which, while not necessary in our ap-
plication, has been shown to preserve signed distance function
property of the level set, and thus enhances accuracy.

2.2. Prescribed curvature model

The prescribed curvature velocity model, F(�x, t) = κ0 −
κ(�x, t), where κ0 is a given constant, and κ(�x, t) is curva-
ture of the level set function at the interface, was introduced
by [25]. This model can equivalently be written in the form
F(�x, t) = a0 −b0κ(�x, t), which emphasizes the balance of pres-
sure and surface tension forces. Surfaces of constant curvature
have received relatively little attention especially compared to
minimal surfaces (surfaces of zero curvature) which have di-
rect applications in material science and computer graphics.
The work of [16] gives an overview of the literature on com-
puting minimal surfaces via the level set method.

2.3. Slightly compressible model

We propose a variation of the prescribed curvature model,
which causes the interface to behave as if the fluid within Ω

were slightly compressible. This model takes the form

(4)F(�x, t) = a0 exp

[
f

(
1 − V (t)

Vm

)]
− b0κ(�x, t).

The first term is pressure-like with a reference pressure a0,
target volume Vm and dimensionless bulk modulus f . V (t) is
the volume of the phase inside Ω , which will be seen to corre-
spond to the non-wetting phase, b0 is the surface tension, and
κ(�x, t) is the mean curvature of the interface. For given values
of a0, Vm, b0 and f , the steady state solution of Eq. (4) is a con-
stant curvature solution. The prescribed curvature model, while
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simpler, does not give satisfactory results unless the initial loca-
tion of the interface is very close to the steady state location. In
a typical simulation of capillarity-controlled displacement in a
general porous sample, the capillary pressure and the available
volume of fluid are known, but the complex geometry prevents
even a rough estimate of the final interface location. Our model,
Eq. (4), circumvents this difficulty by allowing for interface ad-
vancement from nearly arbitrary initial position.

2.4. Motion in restricted domains

The original level set method describes the motion of inter-
faces that separate exactly two phases. Our application, how-
ever, involves three phases—two fluid and one stationary grain
phase—and therefore triple junctions.

There has been a number of attempts to extend the method
to deal with multiple phases (none of which is necessarily sta-
tionary). Aside from the computational cost of storing multiple
level sets (one for each phase present) and the difficulty of
defining interphase interactions, it is well known that under
curvature driven motion level sets will pull away from each
other, creating a gap [17]. The first scheme that tackles this
problem was given by [23], followed by the variational level
set method [26,27], and the projection method for the motion
of triple junctions [28,29]. These methods can model different
contact angles at triple junctions, which is of interest in model-
ing of wetting/non-wetting fluids in porous media.

Torres et al. [16] studied the case where the third phase is
stationary, though only in the special case of minimal surfaces.
The authors use only one level set to describe the surface of in-
terest and exploit the fact that minimal surfaces are orthogonal
to the grain boundary. This approach cannot be extended to sur-
faces that meet the grain boundary at different contact angles.
Our work presents the first application of the level set method
to interfaces involving wetting/non-wetting fluids in porous me-
dia.

We account for the porous medium by imposing a constraint
of the type φ(�x, t) � ψ(�x) where ψ is a fixed level set function
that describes the pore space. We refer to ψ as the mask defining
the porous medium geometry. Rather than model the pore space
boundary as a distinct, stationary level set, we simply enforce
the mask after each time integration step. This results in a zero
contact angle. Unfortunately there appears to be no simple way
to impose a nonzero contact angle in this approach.

2.5. Progressive quasi-static (PQS) algorithm

We designed a simple “progressive” algorithm for critical
curvature computation. Surface tension b0 is set to a constant
value that is used throughout simulations while pressure is in-
creased or decreased. In drainage simulations we start either
from the level set corresponding to plane x = 0 or a circular
front at the same position. We then use the slightly compress-
ible model from Section 2.3 to move the level set to an initial,
nontrivial position. Initial pressure a0 is set to the capillary
entry pressure for the pore space opening at x = 0, and the
simulation is run with Vm and f of choice until the steady
state φI is reached. Corresponding pressure is calculated from
aI = a0 exp[f (1 − VI/Vm)] where VI is the volume of the non-
wetting phase as described by φI.

The progressive quasi-static (PQS) algorithm iteration starts
from φI and pressure aI. A step consists of an increment in
curvature 	c, which we impose by increasing the pressure by
	a = b0	c. The prescribed curvature model is then run un-
til it reaches steady state, and the new location of the zero level
set is recorded. Iteration continues until the fluid–fluid interface
touches the opposite boundary of the domain. Critical curva-
ture is the last curvature for which a stable configuration exists
before the invading fluid jumps discontinuously to a new loca-
tion in the pore space, as elaborated in the next section.

In imbibition simulations we start from an end-point of a
drainage simulation and at each step run the prescribed curva-
ture model with pressure reduced by 	a.

As a matter of practical implementation we note that increas-
ing the surface tension value b0 strongly affects the Courant–
Friedrichs–Levy (CFL) condition, by reducing the time step. In
our modeling, however, only the ratio a0/b0 matters and b0 can
be set to a small value. Furthermore, maximal absolute error
E = max�x |φ(�x, t) − φ(�x, t − 	t)| is evaluated every 	t = 0.5
(the actual time spacing δt in the numerical discretization of
Eq. (3) is independent of this value). Steady state is assumed
reached when E < Emax	x, where 	x is the grid spacing and
Emax a small value, assumed 0.05 by default. We reinitialize the
level set function after every 	t period.

In all of the results presented below we used the second or-
der accurate schemes in both space and time. A layer of three
ghostcells was thus added to each side of the computational vol-
ume as required by the numerical derivatives, and the “signed”
linear extrapolation boundary conditions were used that avoid
creation of an artificial zero level set on the volume boundary
(as implemented in [20]).

2.6. Identification of critical events

In a throat, only one critical event can occur during drainage,
namely a Haines jump. This event can lead to several types
of subsequent pore equilibrium states, depending on the sizes
of other throats attached to the drained pore. During imbibi-
tion into a pore, several critical events are possible, depending
on the initial configuration of the interface(s). We employ two
independent measures to identify critical events, one based on
topology and the other on volume.

Topological (connectivity) changes are effectively measured
as changes in the number of connected components of the wet-
ting fluid voxels from a step to the following step. (Wetting fluid
voxels are the voxels where the appropriate level set function is
negative.) The number of connected components is determined
by the grassfire algorithm which is the standard practice for
multiphase images [30,31]. The criterion for two wetting fluid
voxels to be connected (shared faces, shared edges or shared
vertices) does not influence the result. However, we impose a
lower bound on the size of the components. This eliminates
spurious topology changes arising from segmentation errors,
specifically around the grain contacts. There digitization can
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Fig. 3. (a) A complete sequence of PQS algorithm for drainage in a single throat delineated by spherical segments. Grid spacing is 	x = 	y = 0.02. Initial interface
position is shown as a dashed line (Web figure: blue line) and the subsequent steps alternate in gray and black lines (Web figure: red and green lines). The critical
curvature step is shown as a thick black line (Web figure: magenta line, corresponding curvature is 6.63; the exact solution is 6.66). The next increment in pressure
resulted in the zero level set (shown in a thin gray line, Web figure: red line) touching the top boundary of the domain and aligning with the zero level set of the mask,
indicating that the fluid–fluid interface left the domain. Note that the alignment is complete except for the points near the domain boundary (due to the extrapolating
boundary conditions). (b) A selected number of the model steps for drainage in three throats in parallel. A single level set determines the interface location in all
throats simultaneously. The method correctly identifies that the left-most throat drains first, after a computed critical curvature of 6.70 has been reached. The menisci

remain in the middle and right throats at that curvature.
create many very small disconnected components of the pore
space that usually contain the wetting fluid. The tradeoff with
imposing a threshold (100 voxels in our case) is that in some
situations, near the end of drainage simulation when curvatures
are large, even a legitimate pendular ring may shrink below
the threshold. This will be incorrectly noted as a topological
change. This very rarely occurred in the results shown below,
because 100 voxels is a negligible fraction of the total volume
(typically around 503 voxels).

The PQS algorithm imposes a series of small changes in cur-
vature. If a change does not lead to a critical event, the new
equilibrium location of the interface will be near the previous
location, and the volume of fluid will change only slightly. (Vol-
ume of the fluid is obtained by integration of the appropriate
level set function rather than by counting voxels.) If on the
other hand a critical event occurs, the interface jumps to a sig-
nificantly different location. The corresponding jump in volume
of the invading fluid will be much larger than previous volume
changes. In this work, a change in volume fraction (fluid vol-
ume normalized by the total volume of the available pore space)
that is larger than 0.1 is tagged as a fluid volume jump and has
proved to be a robust identifier of a critical event.

3. Results

3.1. Throat drainage in 2D

3.1.1. Analytical throat geometry
We tested the PQS algorithm for drainage (advancing of non-

wetting phase) in 2D on a number of analytically created throat
geometries. The masks are the union of signed distance func-
tions corresponding to spherical and linear segments. Fig. 3a
shows a complete PQS algorithm sequence. The method finds
the analytical solution (sectors of circles tangent to the walls of
the throat). It also correctly identifies the critical curvature, at
which the interface jumps through the narrowest constriction in
the throat.

The method’s topological robustness is evident in Fig. 3b.
Only one level set function is needed to account for the inter-
face, which consists of three disjoint menisci, one entering each
throat from the bottom of the domain. Furthermore, as shown
on the same figure, the algorithm is robust with respect to sharp
corners and “bumps” on the grain surface. In both cases the
computed solution has less than 1% relative error.

3.1.2. Digital throat geometry
Consider now drainage in a 2D throat whose geometry is

taken from a segmented X-ray image1 of a real rock (Fig. 4).
The grain boundaries in such images are piece-wise linear and
thus require some pre-processing for best results. If the mask is
left in its segmented form (i.e. values of −	x inside the pore
space and 	x outside), the low resolution and this crude mask
(Fig. 4a) strongly degrade the accuracy. The simulated critical
curvature has 7.3% relative error (the correct value is 14.91),
and the position of the interface at the critical curvature is not at
the correct location. Magnifying the image improves the critical
interface position and slightly reduces relative error (Fig. 4b),
but this increases running time. The problem is best remedied
by applying a high accuracy reinitialization routine to the mask
in a narrow band around the pore–grain interface. This smooths
the interface and changes the mask to a signed distance func-
tion (Fig. 4c), yielding a critical curvature estimate with 3.4%
relative error. The reinitialization changes the underlying seg-
mented image at a negligible number of voxels.

1 The image used here is available from the 3DMA-Rock software web-
site [32], Instructions for running 3DMA-Rock, version 12/03.
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(a)

(b)

(c)

Fig. 4. Simulation of drainage in a 2D throat cut out from a slice of a segmented
3D X-ray microtomography image. Critical curvature zero level set in each plot
is shown as a solid black curve. (a) Simulation with a crude mask directly from a
segmented image. (b) Simulation with a crude mask from the segmented image
magnified 5 times (each voxel replaced by 5 × 5 voxels of the same value).
(c) Mask obtained from the segmented image as for (a), but reinitialized before
the simulation.

3.2. Pore imbibition in 2D

Let us now apply the PQS algorithm to simulate imbibition
in 2D pores. All simulations begin at a drainage endpoint, that
is, with the level set at a location defined by the procedure de-
scribed above. Figs. 5a–5c show imbibition in rectilinear pores
typical of traditional network models. Solid black lines show
the interface location at the critical curvature (i.e. the last sta-
ble configuration before the zero level set leaves the domain).
Note that if the simulation reaches zero pressure, the level set
inevitably leaves the domain upon further pressure decrease,
because the curvature term in the level set evolution equation is
zero. Critical curvature predictions in these pores are in agree-
ment with those presented by [5,33].

Figs. 6a and 6b show imbibition in a pore between three
discs of unit radius. For Fig. 6a, the computed critical curva-
ture of 3.99 has less than 1% relative error (correct value is 4.0).
The algorithm identifies the critical event as occurring when the
menisci in the top and bottom throats merge. The method han-
dles the change in topology automatically. In Fig. 6b, only one
interface is initially present, and the method correctly predicts
that no topology changes occur. The interface gradually retreats
from the throat, but the pore does not imbibe at any positive cur-
vature.

Figs. 6c and 6d show comparable results in a pore taken
from a real geometry. Several local mergers of menisci occur
in Fig. 6c, culminating in the critical event when the interface
in the upper throat merges with the interface in the lower right
throat. In Fig. 6d, no meniscus is present initially in the right-
most throat. Consequently the menisci in the upper and lower
throats cannot merge at any positive value of curvature. The
zero level set at curvature 0.04 in Fig. 6d is the last one that
maintains contact with the grain boundary on the left side. Sub-
sequent steps require information beyond the boundary, so the
simulation was stopped. It is clear however that the algorithm is
approaching the correct critical curvature of zero. As in Fig. 5b,
the pore cannot imbibe when menisci are present only in “op-
posite” throats.

3.3. Porous sample drainage and imbibition in 2D

Having established that the method captures events at the
level of a single pore throat or pore body, we now consider a
small ensemble of pores. Fig. 7 demonstrates the quasi-static
model simulation in a 2D granular medium consisting of discs
of different sizes. While only selected steps are shown, two
pore level events have been seamlessly resolved from the curve
C = 7.33 through the two subsequent curves C = 7.43 and
7.53 in Figs. 7a and 7b. Let (i, j) denote the throat between
disks i and j in the mentioned figures and Cij its critical cur-
vature. The pore space above and to the right of throat (1, 3)
drained after curvature became higher than the critical value
for that throat, C13 = 7.38. At C = 7.43 menisci are present in
the throats between each pair of the discs 2, 3 and 4. Increas-
ing the curvature to C = 7.53 causes these menisci to merge
and the pore outlined by these discs to drain. (We remark that
this implementation of the PQS algorithm assumes that the wet-
ting phase can always escape from the domain. Physically this
corresponds to assuming that film flow along grain surfaces is
possible.) The pore drained even though a curvature of 7.53
is much smaller than needed for fluid to advance through ei-
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(a) (b) (c)

Fig. 5. Imbibition in rectilinear 2D pores with several combinations of widths of attached throats. Only a few steps are shown in each figure for clarity, with the final
stable stage before a critical event plotted as a solid black curve. (a) Imbibition starts from a value of capillary pressure somewhat smaller than the critical value
for draining the top, bottom and right throats. The level set method yields the familiar “inscribed circle” as the critical interface location. (b) When imbibition starts
from a configuration with menisci in opposing throats, it is not possible for the menisci to merge. (c) In contrast, when two neighboring pore throats contain menisci
in the initial configuration, merger is possible at finite curvature. The curvature is smaller than the critical value in (a), consistent with the experimental observations
in [33].

(a) (b)

(c) (d)

Fig. 6. Imbibition in two different 2D pores, each with interfaces in two different initial configurations. Only a few steps are outlined in each case, with the critical
one shown as a solid black curve. (a) Imbibition simulation in a pore bounded by three discs of radius 1.0. Initial configuration is two disjoint menisci of large
curvature. (b) Imbibition in the same pore as in (a), but with only one meniscus initially present. (c) A 2D pore from an imaged polyethylene (same source as in
Fig. 4) initially contains three menisci, whose locations were determined by a simulation of drainage. As capillary pressure is decreased, the menisci in the bottom
and right throats retreat toward the pore and merge. Subsequently the merged interface itself merges with the meniscus in the upper throat and this is the last stable
configuration. (d) As in Fig. 5b, if the initial configuration has menisci occupying opposing throats, rather than neighboring throats, no merger occurs at nonnegative
capillary pressure, and the pore does not imbibe.
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(a) (b)

(c) (d)

Fig. 7. Simulation of a cycle of drainage followed by imbibition in a 2D model granular porous medium. Events associated with numbered discs are discussed in
the text. (a) Selected steps from the beginning of the simulation are shown. The increasing number of distinct menisci in throats is handled automatically with a
single level set. (b) Continuation of the drainage process, shown in this separate plot for clarity. Simulation is stopped when the zero level set touches the boundary
(y = 2 plane) and the final step is simulated at curvature value of 12.03. The number of distinct menisci decreases during some steps and increases during others.
These topological changes are handled automatically by the level set. (c) Imbibition starts from the drainage curve of (b) at C = 11.93. Selected steps are shown
from the middle of the simulation. (d) Further imbibition steps are shown in this separate plot for clarity. The imbibition curve at C = 2.53 is the last stable step.
The algorithm correctly quantifies the hysteretic nature of the drainage/imbibition cycle.
ther throat (3, 4), for which the critical curvature is C34 = 18.2,
or (2, 3), C23 = 13.58. The reason is that these throat channels
are short, and the meniscus advancing through the throat (2, 4)
(C24 = 7.65) touched the other two, making the configuration
unstable. The final location of the interface when C = 12.03
has only two throats that contain pendular rings of the wet-
ting fluid: (5, 6) and the throat between disk 7 and the wall
boundary on the right hand side. Figs. 7c and 7d show selected
imbibition curves for process that started from the drainage
curve C = 11.93. A series of critical imbibition events occur
in individual pores as menisci merge. The imbibition curve at
C = 2.53 is the last stable step with the nontrivial zero level set
that maintains the contact with the boundary on the left hand
side.

The algorithm is consistent with the well-known hysteresis
of drainage–imbibition cycles, both for individual pores and for
a porous material. For example, the pore space in the vicinity
of coordinates (1.5,1.4) drained at a curvature C = 7.43, but
did not imbibe until the curvature was less than 4. Most of the
volume of the domain was drained at C > 7 but was imbibed at
C < 3.
Fig. 8 shows PQS simulation of the drainage/imbibition cy-
cle in a 2D slice taken from a real, consolidated porous medium.
Fig. 8a captures the merger of two fronts near the coordinate
(1.6,0.4) when the curvature increases from 11.46 to 11.56.
Fig. 8b shows drainage of the pore at (0.6,0.8) when the curva-
ture increases from 15.36 to 15.46. The same pore is imbibed at
a critical curvature of 5.56 as shown in Figs. 8c and 8d. Several
menisci merge when the curvature decreases from C = 2.56
to 2.46, causing the non-wetting phase in the middle channel
above y = 0.8 to withdraw from the pore space.

3.4. Comparison with experimental data

The preceding sections establish the accuracy of the progres-
sive quasi-static algorithm for 2D porous media. In this section
we show experimental confirmation of the method. Mason and
Morrow [34] studied meniscus configurations in pores of uni-
form cross section and found excellent agreement between ex-
perimental and theoretical values. The pores were formed by
two cylinders (rods) of the same radius adjacent to a flat plate.
Since these pores do not have converging-diverging geometries,
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(a) (b)

(c) (d)

Fig. 8. Drainage and imbibition simulation in 2D slice from a real porous medium geometry. The image source is same as in Fig. 4a. Drainage starts at a pressure
value large enough to enter all throats at y = 0 plane except the one at x = 1.3. Selected steps from the beginning of the simulation are shown. A large Haines
jump occurs from the throat at x = 0.7. (b) Continuation of the drainage simulation from (a), shown in this separate plot for clarity. Simulation is stopped when
the zero level set touches the boundary (y = 2 plane) and the final step is simulated at curvature value of 15.46. (c) Imbibition starts from the final drainage curve
(C = 15.46). Selected steps are shown from the middle of the simulation. (d) Further imbibition steps are shown in this separate plot for clarity. Simulation ends at
the simulated curvature of 1.96 when the zero level set disappears from the sample.

(a) (b)

Fig. 9. (a) Cross-sectional geometry of the two-rods-and-plate configurations from Mason and Morrow [34] for symmetrical (A) and asymmetrical (B) spacing.
Rectangular area shows the limits of the geometry we used for simulation. The dotted lines represent the fluid–fluid interface and corresponding radii of curva-
ture. (b) Level set method simulation for symmetrical spacing where the normalized gap spacing (d/R) is 0.16. In the terminology of Mason and Morrow, this
configuration has two dryside open arc menisci and one dryside closed menisci (2 DOAM, 1 DCAM).
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Mayer–Stowe–Princen theory applies and curvatures can be
calculated from the two-dimensional cross-section of the con-
sidered problem.

We simulated these experiments with our three-dimensional
code. The cross-sectional geometry for symmetrical and asym-
metrical arrangements of touching rods is given in Fig. 9a. As
discussed in [34], more than one stable configuration can exist
for the given spacing, and which one forms depends on the grain
boundary conditions (or the insertion of obstacles that prevent
a certain configuration and allow another). We computed the
meniscus configuration in geometries without inserted obsta-
cles, obtaining configurations such as Fig. 9b. To allow for
gradual advancement of meniscus in the simulated geometry,
we augmented the constant cross-sectional geometry with a
short duct at the inlet. We find an excellent agreement between
the theoretical results and our simulation for various values of
spacing d (Fig. 10) over the same range of values as in [34].

3.5. Drainage in 3D throats

Dense random packings of spheres are useful models of a
wide range of granular materials. We have therefore applied the
three-dimensional algorithm to a number of pores and throats
from the packing of equal spheres of radius R = 1.0 whose co-
ordinates were measured by Finney [35]. Here we used a subset
consisting of 75 spheres from a [−4,4]3 subvolume of the orig-
inal Finney pack measurements. Delaunay tessellation yields
186 tetrahedra (pores) with 439 faces (throats). Each Delaunay
throat is formed by three spheres. We map the triangle of sphere
centers onto an equivalent triangle in the positive quadrant of
the y–z plane with the longest triangle side on y axis and one of
its vertices at (0, 0, 0) (see Fig. 11). The throat plane is orthogo-
nal to x direction. We cut a [−0.75R,0.75R] subvolume in the
x direction, i.e. we extend the rectangle in Fig. 11. a distance
0.75R above and below the y–z plane. Domains that encompass
more volume (in any direction) might introduce geometry ele-
ments near the boundary that do not belong to the throat (e.g.,
a narrow opening that will act as a parallel, smaller throat) that
might influence the result. We use grid spacing of 0.04, so the
sphere radius R contains 25 grid cells which is a reasonable
discretization [36].

We describe each throat by its area, the three gaps (triangle
side length reduced by 2R) and throat normal. The throat nor-
mal is defined as the value of the triangle normal corresponding
to the longest triangle side reduced by R (see Fig. 11). Ta-
ble 1 gives some basic statistics on these three values. In dense
random sphere packs, Delaunay tessellation (DT) produces a
large number of pores and throats, not all of which are optimal
for determining capillarity-controlled displacements. Modifica-
tions to DT such as the one proposed in [37] delete some throats
and merge the pores connected by those throats. Presently we
want to evaluate the level set method for critical curvature com-
putation and it is out of our scope to perform mentioned modi-
fications.

Results of the progressive quasi-static algorithm (PQS) for a
typical throat from the pack are shown in Fig. 12. The method
handles the topological changes associated with the critical
Fig. 10. Comparison of theoretical predictions (Mayer–Stowe–Princen) with
the PQS simulation results for various gap sizes, and for both types of geome-
tries A, B (see Fig. 9a). Note that in all cases the relative error is less than 2.5%
and the absolute error in curvature is less than 0.1 (the curvature step size for
the simulation).

Fig. 11. Throat cross-sectional geometry mapped onto y–z plane. The throat is
defined by three spheres. The narrowest constriction between these spheres is
mapped to the y–z plane. In y and z directions we cut a box that contains all
of the points A, B, C, D, E, F shown (the intersections of the spheres and the
triangle). The dashed line shows the throat normal.

Table 1
Throat statistics

N Throat area Maximal gap Throat normal

min max ave min max ave min max ave

All throats 439 0.15 1.51 0.43 0 1.05 0.93 0.35 1.02 0.65

event correctly: the single interface in Fig. 12a undergoes a
Haines jump to leave three interfaces in Fig. 12b. Fig. 13 com-
pares 3D throat critical curvatures obtained by PQS and the
curvatures predicted by MSP theory for their constant-cross-
section counterparts (i.e. Fig. 11, see Appendix A for details of
the MSP calculation).

There are 12 throats in the sample where the throat nor-
mal is smaller than a half of the maximal gap between spheres
(marked as ‘PQS large’ in Fig. 13). In nine of these throats the
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(a) (b)

Fig. 12. (a) Location of the interface at the critical curvature for drainage in a throat between three spheres (Geomview visualization). The sphere surface is light
gray and the fluid–fluid interface is shown in dark gray (Web figure: blue) for applied curvature of 8.89. MSP theory predicts the critical curvature for this throat
at the value of 9.19. (b) When curvature is increased to 8.99 in the same throat, the fluid–fluid meniscus cannot be supported any more. It jumps to a new location
outside the domain, leaving three pendular rings around the sphere contacts that are shown in dark gray (Web figure: orange). A movie accompanying this figure is
available from the supplementary material.
Fig. 13. Comparison of the 3D throat critical curvatures obtained by the PQS al-
gorithm and the curvatures predicted by MSP theory for their 2D counterparts.
‘PQS large’ refers to the twelve throats with the throat normal smaller than the
half of the maximal gap between spheres.

computed PQS values for the critical curvature are larger than
MSP values. One such throat is shown in Fig. 15. Visual in-
spection finds nothing irregular with the PQS simulation. Of
the remaining 427 throats, 28 (6.6%) have PQS values that
agree with the MSP values, within the resolution of one step
in curvature (i.e. a difference of 0.1 in curvature values). PQS
yields consistently smaller values than MSP for the other 399
throats, by at least 0.1 curvature units (i.e. measurably). This
is in good agreement with the experimental findings of Mason
and Morrow [38], who performed critical curvature measure-
ments in rhomboidal arrangements of four touching balls with
the rhomboid half angle ranging between 30◦ and 45◦. We took
the arrangements that, due to either small angle or symmetry,
correspond to Finney pack throats and compared them to those
throats from our sample where two gaps are equal to zero. The
comparison is given in Fig. 14.
Fig. 14. Comparison of the PQS algorithm results for 58 Finney pack throats
whose two gaps are 0 (up to a floating point/measurement error of 0.001) to
experimental values from Mason and Morrow [38]. MM86 three-sided refers
to three-sided arrangements from [38] and is equivalent to Finney throats with
all gaps equal to 0. MM86 four-sided refers to four sphere arrangements that,
because of higher packing angle in the rhomboidal arrangement, had a sin-
gle meniscus. By symmetry, such arrangements are equivalent to three-sided
arrangements where two gaps are equal to and the third is larger than zero.

3.6. Drainage and imbibition in 3D pores

We now consider drainage of an individual 3D pore, fol-
lowed by imbibition. A pore is the void space between four
spheres whose centers form a tetrahedron in the Delaunay
tessellation. To illustrate the method for a given pore, we
find the throat with the smallest calculated critical curvature.
We initialize the PQS simulation by assuming that the non-
wetting phase enters through that throat. Fully characterizing
the drainage/imbibition behavior of pores requires considering
all four throats [11] and is beyond the scope of this paper.

The entry throat is mapped so that it is orthogonal to x-di-
rection of the simulation geometry (cf. Fig. 11). The fourth
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(a) (b)

Fig. 15. PQS algorithm simulation result for a throat with throat normal larger than the half of the maximal gap. The MSP calculated curvature for this particular
throat is 3.53, however the critical curvature in such a case will be determined by surrounding spheres. (a) Critical curvature stage (Geomview visualization). The
sphere surface is light gray and the fluid–fluid interface is shown in dark gray (Web figure: blue) for applied curvature of 4.35. Since the gap between lower two
spheres is rather large, the solution in this case depends on the information beyond the lower y-z plane boundary, and the zero level set behaves correctly within the
provided information, meeting the open boundary at a right angle. (b) When curvature is increased to 4.45 in the same throat, the fluid–fluid meniscus cannot be
supported any more and Haines jump occurs (and the simulation stops). Pendular rings are about to form around the two upper sphere contacts. Fluid–fluid interface
shown in dark gray (Web figure: orange).

(a) (b)

Fig. 16. Front and back views of the fluid–fluid interface (dark gray, Web figure: blue) at a drainage step with applied curvature C = 7.29 in a pore from Finney
pack. This is the last step before the first critical event occurs. Box volume corners are labeled for easier orientation. (a) The view from the inside of the sphere
opposing the entry throat. The sphere grain boundary is transparent for clarity. Two menisci are visible in throats close to corners G and H. (The sawtooth edges on
the sphere surface in the lower left corner are typical for triangulated surface near the sphere contacts and are due to finite resolution.) (b) The view from the entry
throat. Here the grain surface is shown as a mesh with edges outlined in black. The contact line between solid surface and fluid–fluid interface is easily discerned.
A movie accompanying Figs. 16–18 is available from supplementary material.
sphere defining the pore is mapped so that it lies on the pos-
itive x-coordinate side. The computational domain is a brick
and its volume geometry limits are set so that points A, B, C,
D, E and F from Fig. 11. are included in the volume for each
of the 4 adjoining throats. We also add a buffer of length 0.1R

to each brick volume side in order to allow more space for the
pendular rings formation.

When drainage simulation is run in a throat, the channel-like
geometry allows one to stop the simulation after the interface
touches the boundary opposite to its initial position. Pore geom-
etry is slightly more complicated, so we run drainage simula-
tions until 95% of volume is occupied by the non-wetting fluid.
(Note that pendular rings, if existent, cannot always be drained
completely.) We then process the level set functions for each
drainage step to identify critical events: topological changes and
fluid volume jumps as described in Section 2.6.

A specific example of the drainage simulation in a pore is
shown in Figs. 16–18, which depict a series of critical events
identified by the algorithm. At a curvature of C = 7.29 the
fluid interface still has menisci in two throats (corners G and
H in Fig. 16). The throat in corner H drains at the curvature
C = 7.39. This critical event is manifested both as fluid volume
jump and a topological change (pendular rings form, Fig. 17a).
The next critical event occurs between curvatures C = 8.39 and
8.49, when the throat at corner G drains (Fig. 17b). Subsequent
critical events are the rupture of two liquid bridges held in the
gaps between spheres (near corners D and E in Fig. 18). No fur-
ther critical events occurred as curvature increased to the final
value in this simulation (C = 26.29). The pendular rings near
corners F and C in Fig. 18b remain stable.

Imbibition can start from any drainage endpoint, and thus
from different configurations of the fluid–fluid interface. An im-
portant consequence is that the value of critical curvature for
the imbibition event will depend on the drainage starting point.
In the simulations shown here, imbibition stops when the zero
level set disappears from the volume, or the simulated curvature
reaches 0 indicating the pore in question cannot be imbibed.

Fig. 19 shows imbibition from the drainage step C = 7.29.
Hysteresis is significant: the pore does not imbibe until a criti-
cal curvature of C = 4.29 when the interface looses the contact
with all four grains. Fig. 20 shows imbibition from a slightly
larger drainage curvature C = 7.39. Although the initial curva-
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(a) (b)

Fig. 17. Further drainage steps for the same pore as in Fig. 16. (a) The fluid interfaces at curvatures C = 7.29 (dark gray, Web figure: blue) and C = 7.39 (light gray,
Web figure: orange) are very different in the vicinity of corner H. The PQS algorithm thus identified this step as a critical event. During this step, the non-wetting
fluid volume changed by a fraction of 0.18 (due to a Haines jump in the throat near corner H), and the number of wetting phase connected components changed
from 1 to 3 (due to formation of pendular rings near corners E and D). (b) Comparing the fluid interfaces at C = 8.39 (dark gray, Web figure: blue) and at C = 8.49
(light gray, Web figure: orange) reveals another critical event. Due to a Haines jump in the throat near G, the volume changed by a fraction of 0.15 and the number
of connected components of the wetting fluid changed from 3 to 4 (a blob of wetting fluid close to corner G split into two pendular rings—near F and C). A movie
accompanying Figs. 16–18 is available from supplementary material.

(a) (b)

Fig. 18. Further drainage steps for the same pore as in Figs. 16 and 17. (a) The fluid interfaces at C = 12.69 (dark gray, Web figure: blue) and at C = 12.79 (light
gray, Web figure: orange) show a critical event, this time due to a decrease in the number of the wetting fluid connected components: the liquid bridge near corner
D ruptured. (b) The fluid interfaces at C = 16.89 (dark gray, Web figure: blue) and at C = 16.99 (light gray, Web figure: orange) reveal another critical event: a de-
crease in the number of the wetting fluid connected components. The liquid bridge in the corner E ruptured (note that light gray surface aligns with sphere grain
boundary). The curvature C = 16.99 is the last critical event identified. The remaining pendular rings remained intact as the simulation ran until C = 26.99. A movie

accompanying Figs. 16–18 is available from supplementary material.
ture is similar, the initial configuration of interfaces is quite dif-
ferent than in Fig. 19. (As described above, this is because of the
critical drainage event between C = 7.29 and 7.39.) Because of
the different topology of the initial configuration, the critical
curvature for imbibition found by the PQS algorithm is smaller,
C = 2.99. Thus the drainage/imbibition hysteresis is even more
pronounced. A still smaller critical curvature was found, C =
2.89, when imbibition started from the drainage stage with cur-
vature C = 8.49. As before, this is the consequence of different
initial topology of fluid–fluid interfaces. Critical curvature for
imbibition that starts from the later drainage stages C = 12.79
and 16.99, however, is also C = 2.89. This is because subse-
quent critical events during drainage did not change the inter-
face locations that turn out to control the imbibition process in
this pore.
4. Discussion

4.1. Non-uniqueness of critical curvatures for imbibition

As shown by the previous example, we can measure a num-
ber of different critical curvatures for imbibition depending on
the starting point for the simulation. The PQS algorithm pro-
vides some insight into this familiar concept. In any pore we
found as many as 4 different values. If we simulate imbibition
starting from drainage steps i and j such that Cdrain

i � Cdrain
j ,

the corresponding critical imbibition curvatures obey Cimb
i �

Cimb
j . That is, it is harder to imbibe starting from a drainage

step surface that has potentially undergone some (irreversible)
critical events. This is consistent with observations [5,33] that
a pore with more neighbors that contain non-wetting phase is
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Fig. 19. Sphere surface is outlined as triangular mesh. Imbibition starts from the
drainage step C = 7.29 (dark gray, Web figure: blue; also shown in Fig. 16). The
fluid–fluid surface “shrinks” slowly toward the viewer until the critical stage
C = 4.29 (light gray, Web figure: orange). The critical imbibition step is the
last one where the contact with all spheres is maintained (note the small patches
of contact between the C = 4.29 surface and the grain boundary triangulated
mesh) and with further reduction in curvature pore imbibes completely.

harder to imbibe. To quantify this, let C1, C2, C3 and C4 be up
to four unique values of imbibition curvature obtained from the
PQS simulation. We break all pores into four groups accord-
ing to the number of unique values they have. Fig. 22 shows
minimum and maximum Ci for each i = 1, . . . ,4 that exists
in a group and compares it to Haines imbibition curvature es-
timate (recall CH = (2/Rin) where Rin is the inscribed radius
for a pore). The pore whose imbibition is shown in Figs. 19–
21, for instance, has C1 = 4.29, C2 = 2.99 and C3 = 2.89, with
CH = 5.94. Note that the mentioned pore had two throats drain
immediately due to a large gap between two spheres on en-
try (see Fig. 16b). Had the gap been smaller, we would have
only entry throat drain immediately, creating menisci in the
three other throats. Imbibition sequence in such a pore would
have four possible critical imbibition values, depending on the
drainage endpoint selected as the initial condition. The relation-
ship between the sphere gaps and the number of unique critical
imbibition values is further quantified in Table 2: the smaller the
median and maximal gaps in a pore, the more unique imbibition
curvatures are measured. The majority of the throats (109) fall
into the group with two unique critical imbibition curvatures.
Fig. 23 displays pointwise C0 and C1 for this group.

4.2. The Melrose criterion for imbibition

The simulations of imbibition using the PQS algorithm pro-
vide new support for the validity of the Melrose criterion [12]
for imbibition of individual pores. Gladkikh and Bryant [11]
obtained good a priori predictions of imbibition capillary pres-
sure curves in unconsolidated granular materials using this cri-
terion. This was an encouraging result, but relied on two as-
sumptions. One of these, discussed in the Introduction, was
that menisci in pore throats were locally spherical. The second
assumption was more profound: that the merger of previously
distinct menisci leads to an unstable configuration and thus to a
critical event. The second assumption can be rigorously proven
in relatively simple 2D pores, but to our knowledge has not been
demonstrated in 3D.

The level set method implemented here makes no assump-
tions about the geometry of the interface. Because it does not
treat the interface specially, and because it accounts for the
topology of the interface implicitly, the method makes no as-
sumptions regarding stability or instability of merging inter-
faces. The method identifies critical events “after the fact” by
reckoning changes in phase volume and in number of connected
components of wetting phase after an increment in curvature.
Thus it is significant that every critical imbibition event identi-
fied by the method also corresponds to the merger of two pre-
viously distinct menisci. Examples can be observed in Figs. 5a,
6a and 6c, Figs. 7c and 7d (e.g., pores at coordinates (2.4,1.6)

in Fig. 7c and at (1.7,1.3) in Fig. 7d), and Fig. 19.
The notion of “merger” in this context warrants elaboration.

Touching is a necessary but not sufficient condition for merger
of interfaces in 2D. If the arrangement of the grain boundaries is
such that the two menisci form a cusp where they touch, merger
will not occur. Only when the first derivative along the interface
is continuous at the point of touching will merger occur. This
explains the situation at the critical curvature in Fig. 5a. In 3D,
with smooth grains like the ones studied here, the prerequisite
for merger is that two menisci contact each other everywhere
except a finite set of isolated points on the grain surface. As
long as the non-wetting phase is in contact with a patch of the
grain surface, the interface can accommodate a decrement in
curvature by retreating from the grain surface, thereby decreas-
ing the area of the patch. When no further retreat is possible,
all properties of the interface vary smoothly everywhere, and
the menisci merge. Any subsequent decrement in curvature re-
quires the merged interface to withdraw from the pore. The
situation depicted in Fig. 19 is very close to merger.

4.3. Contact angle and domain boundaries

This implementation of the level set method does not im-
pose a contact angle. Enforcement of the mask that defines the
grain space has the side-effect of causing the zero level set to
be tangent to grain surfaces. The contact angle is therefore zero,
and the simulations correspond to the case of perfectly wetting
and perfectly non-wetting fluids. In contrast, when part of the
boundary of the computational domain is open, that is, when
no grain is present along that interval of the boundary, the zero
level set will intersect that part of the boundary at a right angle.
Fig. 15a illustrates this effect. Because computations on indi-
vidual pore throats are by definition done in a subvolume of
3D pore space, the occurrence of free boundaries is inevitable,
especially in unconsolidated materials. Physically, an assump-
tion of some kind is necessary on such boundaries. Our method
imposes no condition, but the apparent orthogonality condition
that emerges corresponds to a suitably neutral assumed bound-
ary condition. In applications to dense granular materials, the
interface would be constrained by other grain surfaces besides
those defining the pore throat. In these cases, a more accurate
assessment of critical curvature would require additional grains
to be included in the computational domain. For model granu-
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(a) (b)

Fig. 20. Two rotational views of the imbibition starting from the drainage endpoint C = 7.39 (dark gray, Web figure: blue; also shown in Fig. 17a) and the critical
imbibition stage C = 2.99 (light gray, Web figure: orange). The sphere surface is transparent. After the three “leaves” of the interface near corner H come into
contact, the fluid interface disappears from the volume.

(a) (b)

Fig. 21. Two rotational views of the critical imbibition stage C = 2.89 (light gray, Web figure: orange) for the imbibition starting from the drainage endpoint
C = 8.49. Initial surface is not shown but can be seen in Fig. 17b. The sphere surface is shown as a transparent mesh with edges outlined in black, in order to reveal
more details about the fluid interface contact with the grain boundary. After the two “leaves” of the interface near corner H (refer to (a)) come into contact, the fluid
interface disappears from the volume. A movie accompanying this figure is available from supplementary material.
Fig. 22. Comparison of Haines critical curvature estimate for imbibition and
the values obtained by the PQS algorithm for the Finney pack pores consid-
ered. Groups of pores that have i = 1,2,3,4 different PQS values are shown
separately with the number of pores in each group indicated as Ni .

lar materials (sphere packs), the modified Delaunay tessellation
of [37] may be one way of identifying the appropriate spheres
to be included.

5. Summary

The progressive quasi-static (PQS) algorithm identifies crit-
ical curvatures for throat drainage and for pore imbibition with-
out manual intervention in both two and three dimensions. The
algorithm takes advantage of several attractive features of level
set methods. Tests on analytical model pores and on digital im-
ages of real materials indicate that PQS is robust with respect
to geometry and smoothness of pore throats and bodies. Most
importantly, it automatically handles the merger and splitting
of multiple menisci. Such topological changes characterize the
key pore-level events in capillarity-controlled displacements.
The computed critical curvatures agree well with theory and
with experiments.
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Table 2
Gap (spacing between spheres) statistics by groups of pores that have i = 1,2,3 or 4 unique PQS imbibition curvatures

i N1 Minimal gap Median gap Maximal gap

min max ave min max ave min max ave

1 30 0 0.00512 0.000731 0 0.358 0.1 0.433 0.958 0.721
2 109 0 0.0755 0.00178 0 0.391 0.0892 0.303 1.05 0.671
3 34 0 0.00667 0.000552 0.00379 0.254 0.0896 0.0725 1.03 0.518
4 10 0 0.00228 0.000247 0.00135 0.0461 0.016 0.068 0.158 0.115
Fig. 23. Comparison of the curvatures obtained by the PQS algorithm and the
Haines estimate for 109 pores with exactly two unique imbibition values.

Essentially the same algorithm is applicable for both drain-
age and imbibition simulations. The model yields hysteretic
drainage/imbibition behavior consistent with previous analysis.
Only a zero contact angle can be accounted for in the current
implementation, however, and in domains with free boundaries
the zero level set adopts a de facto condition of orthogonality to
the boundary. Future work will include implementing the mul-
tiphase approach from [29]. This will allow us to incorporate
fluid–fluid-solid contact angle in the modeling. Practical appli-
cation to individual pore throats and bodies will require better
understanding of the free boundary behavior. In many appli-
cations of interest, other grain boundaries would constrain the
interface, and including these grains in the simulations is an ob-
vious next step.

Simulations in a variety of pores provide new, independent
support for the Melrose criterion for imbibition events. In par-
ticular, the merger of previously distinct menisci is always as-
sociated with the critical curvature for imbibition. This associa-
tion is meaningful because the algorithm makes no assumptions
about the stability (or instability) of menisci. The Melrose cri-
terion provides a quantitative explanation for the well known
observation that a pore with more throats containing menisci
imbibes more easily (i.e. at a larger curvature).
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Appendix A. Mayer–Stowe–Princen theory calculation

For completeness, we are adding the Mayer–Stowe–Princen
(MSP) theory calculation that we used in this work for Finney
pack throats. MSP calculation is essentially two-dimensional:
it is valid for constant-cross-section throats. In this section we
will thus present formulas for throats formed by three rods of
equal radius R. Note that [34] contains complete calculations
for rod–rod–plate cases described in Section 3.4.
(a) (b)

Fig. 24. (a) Cross-sectional view of the throat formed by three rods of equal radius R. The radius of curvature for menisci is r and Aeff is the non-wetting fluid
filled area enclosed by menisci. In this particular example, the pendular rings of wetting fluid exist near all three sphere gaps. The outlined triangle is formed by rod
cross-sectional centers. (b) The dotted area represents the area 	A of a pendular ring between spheres with centers C1 and C2 within the triangle 	C1C2C3.
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Assume that the non-wetting fluid (gas) fills cross-sectional
area Aeff at capillary pressure Pc and the radius of the curva-
ture r (refer to Fig. 24a). The work involved in moving the
meniscus configuration by a small distance dx along the per-
pendicular walls is equal to PcAeff dx and has to overcome the
surface tension. Thus the energy balance reads

(A.1)PcAeff dx = σPL dx + (σSG − σSL)PS dx,

where PL is the total perimeter between the non-wetting and
wetting fluids (gas and liquid), PS is the total perimeter between
non-wetting fluid (gas) and solid, and σ , σSG, and σSL are the
liquid–gas, solid–gas and solid–liquid surface tensions. For in-
stance, in Fig. 24a, PL = P4 +P5 +P6 and PS = P1 +P2 +P3.
From the Young–Dupre equation we know that σSG − σSL =
σ cos(θ) where θ is the contact angle so we obtain

(A.2)PcAeff dx = σ(PL + PS cos θ)dx.

We introduce effective perimeter,

(A.3)Peff = PL + PS cos θ.

Then from Pc = (σ/r) and Eq. (A.3) we get the relation

(A.4)r = Aeff

Peff
.

Effective area and perimeter depend on r , so we will have to
find the root of Eq. (A.4). In order to ease solving the equation
in each particular throat case, we will define the basic area A′
and basic perimeter P ′ as the throat area and the throat solid
perimeter. The throat area is the triangle area A	 reduced by the
three circular section areas, whereas the throat solid perimeter
is the length of the circular section perimeters (|ÂF | + |B̂C| +
|D̂E| in Fig. 24b):

(A.5)A′ = A	 − π

2
R2, P ′ = πR.

In order to obtain effective area and perimeter, for each ex-
istent pendular ring we have to substract its area and perimeter
within the triangle from the basic area and perimeter. In the
case of the particular pendular ring shown on Fig. 24b, denote
a1 = |C1C2|, and let γ1 be the angle � CrC1C2 = � CrC2C1 in
radians. Then

(A.6)tanγ1 =
2
√

(R + r)2 − (a2
1/4)

a1

and the area of 	CrC1C2 is given by

(A.7)A1 = a2
1

4
tanγ1.

The pendular ring area within the triangle is then

(A.8)	A = A1 − γ1R
2 −

(
π

2
− γ1

)
r2.

Similarly,

(A.9)	P = 2Rγ1 cos θ − 2r

(
π

2
− γ1

)
.

Eq. (A.4) then becomes

(A.10)r = A′ − 	A

P ′ − 	P
.

Supplementary material

The online version of this article contains additional supple-
mentary material.

Please visit DOI: 10.1016/j.jcis.2006.08.048.

References

[1] A.W. Adamson, A. Gast, Physical Chemistry of Surfaces, Wiley, New
York, 1997.

[2] S.L. Bryant, P. King, D. Mellor, Transport Porous Media 11 (1993) 53.
[3] S.L. Bryant, G. Mason, D. Mellor, J. Colloid Interface Sci. 177 (1996) 88.
[4] W.B. Haines, J. Agric. Soc. 20 (1930) 97.
[5] G. Jerauld, S. Salter, Transport Porous Media 2 (2) (1990) 103.
[6] G. Mason, D. Mellor, J. Colloid Interface Sci. 176 (1) (1995) 214.
[7] R. Mayer, R. Stowe, J. Colloid Interface Sci. 20 (1965) 893.
[8] H. Princen, J. Colloid Interface Sci. 30 (1969) 69.
[9] H. Princen, J. Colloid Interface Sci. 30 (1969) 359.

[10] H. Princen, J. Colloid Interface Sci. 34 (1970) 171.
[11] M. Gladkikh, S. Bryant, J. Colloid Interface Sci. 288 (2005) 526.
[12] J.C. Melrose, Soc. Petr. Eng. J. (November 1965) 257.
[13] K. Brakke, Exp. Math. 1 (1992) 141; The Surface Evolver software is

available from http://www.susqu.edu/brakke/evolver.
[14] J.L. Hilden, K.P. Trumble, J. Colloid Interface Sci. 267 (2003) 463.
[15] B. Noble, S. Bryant, Using the surface evolver to model fluid in a pore

space, Rice Quantum Institute 16th Annual Summer Research Colloqium,
Houston, TX, USA (August 2002).

[16] M. Torres, D. Chopp, T. Walsh, Interfaces and Free Boundaries 7 (2005)
161.

[17] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
Univ. Press, Cambridge, 1999.

[18] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,
Springer-Verlag, New York, 2002.

[19] S. Osher, J. Sethian, J. Comp. Phys. 79 (1988) 12.
[20] I.M. Mitchell, J.A. Templeton, A Toolbox of Hamilton–Jacobi Solvers

for Analysis of Nondeterministic Continuous and Hybrid Systems, Lec-
ture Notes in Computer Science (LNCS), vol. 3443, Springer-Verlag, New
York, 2005.
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