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Sammendrag

This note presents a derivation of the Laplace equation which gives the rela-
tionship between capillary pressure, surface tension, and principal radii of curva-
ture of the interface between the two fluids.

First, several mathematical results of space curves and surfaces will be de-
rived as a necessary basis. It is shown that at each point of a surface there are
two principal, normal sections (two planes) that are perpendicular with the line of
intersection being the surface normal. The cuts of the two planes with the surface
define two space curves that each have their centers of curvature on the surface
normal.

The Laplace equation is derived (1) by the concept of virtual work to extend
the interface, and (2) by force balance on a surface element.

| ntroduction

The Laplace equation[1]
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gives an expression for the capillary presspgei.e. the pressure difference over an
interface between two fluids in terms of the surface tensiamd the principal radii of
curvature,R; and R. This expression is often encountered in the literature covering
the concepts of capillary pressure and wettability since it is quite general.

The expression in parenthesis in Eq. 1 is a geometry factor. At equilibrium, each
point on the interface has the same geometry factor. The simple expression reflects
the fact that for an arbitrarysmooth surface, the curvature at any point is defined
by assigning radii of curvaturd®; and Ry, in two planes, callegrincipal curvature
sections. The two planes are normal to each other and their line of intersection is the
surface normal at the chosen point. Also, the curvature of an arbitrary normal section
may be expressed in terms of the principle curvatures.



With sufficient knowledge of the mathematical properties of surfaces, the Lapla-
ce equation may easily be derived either by the principle of minimum energy or by
requiring force equilibrium.

The nomenclature is only for the last section, the derivation of Laplace’s equation
from physical principles. In the first section, which covers mathematical properties of
curves and surfaces, all entities are dimensionless and defined in the text.

Curvature of Surfaces

Surface and Curves

Most of this section follows the exposition of space curves in the textbook by Tambs
Lyche[2].

Letr denote the radius vector from the origin of the Cartesian coordinate system
(X, Y, 2) with unit vectorg(i, j, k). A surface S may be defined by the vector equation

r=Ffu,v) =, vV)i+yYU,v)j+xU vk, ... (2)

or in parameter form

X=¢U,v), yYy=v%U,v), Z=xU,v), ... 3)

whereg, ¢ and y are functions of the two parametarsandv. If the two first equa-
tions in Eq. 3 are solved fan andv and substituted in the third equation, we get
expressed as a function fandy, the usual way to represent a surface. However, the
parameter form is a very useful representation of a surface for description of curvature
characteristics.

If we setu = u(t) andv = v(t) we get the vector equatian= f(t) for a curve (a
space curve) on the surface, or in parameter form:

X=9pM), y=v(@{), z=jxO,

wheret is a parameter. By assumption, all functions are twice differentiable with con-
tinuous second order derivatives. A curve or surface represented by functions fulfilling
this requirement is callesmooth.

Definitions

Arc Length. If f(t) is differentiable with continuous derivative in the intervalljh
then the arc length is defined by

b .
L =/ ot
a



where the dot denotes differentiation with respect.td t € [a, b] and we set =
/3 F®)1dt, we get the arc differentials = |f(t)|dt = +|dr|. Thens is a continuous
function oft that increases from 0 tb whent increases frona to b. Instead oft,
s could be used as a parameter to represent the curve. Biataiseter form, many
formulas are especially simple, e|g!| = |dr/ds| = 1.

Tangent to a Curve. The vectort = dr/ds = r’ is defined as théangent vector
of the space curve = f(t). Since|t| = 1, t is a unity vector along the tangent of the
curve.

Curvature. Thecurvature K of a curve is defined byX = |dt/ds| = |d?r/ds?| =
Ir”], or simplyK = |f”(s)|, the curve being on taxameter form.

Radius of Curvature. The radius of curvatur® of a space curve C is defined by
R=1/K.

Principal Normal to a Curve. The principal normal h of a curve is defined by
h=r"/Ir”| =r"/K.Sincer %> = 1itfollows thatr'-r” = 0, and hencé is normal
tot (and the curve).

Normal of a Surface. The surface normal n to a surface at a point is defined by
n=ryxry,/|lry xryl. Herery andr, denotes partial derivatives ofwith respect to
u andv, cf. Eqg. 2. The total differentiar is given by

dr = rydu +r,dv,

and for the space curve on the surfagces u(t) andv = v(t). From the definition of
t, dr is alongt, and it is easily seen thar - n = 0. That is,n is normal to all curves
on the surface drawn through the selected point.

Normal Plane and Normal Section. A plane through the normal to a surface, i.e.
the normal is lying in the plane, is callednarmal plane The cut between a normal
plane and the surface is a curve on the surface and is catledval section.

Curvature of a Normal Section
Again, letr = f(u, v) a surface S and= f(u(t), v(t)) a space curve C on S. From the
definitions, we hav&K h = dt/ds. Multiplying by n gives

dt
—n = K cosf,
ds



Figur 1: Surface S, curve C through point P, tangent to the curve, surface normal and

principal normal to the curve

whereé is the angle between the principal normal to C and the surface normal at the

chosen point P, Fig. 1.
Sincen -t = 0, we get by differentiation
dt dn

n—+—t=0
ds+ds ’

and thereby
1 dn 1 dn-dr

cosd ds cost ds?
From the definition oh, we haveryn = 0, r,n = 0. Differentiating with respect ta
andv, we get
ryNu + rpan =0, ryNy + rewn =0,

ryny + ruyn =0, ryNy +ryuyn=0.
Since
dn = nydu + n,dv, dr =rydu+r,dv,

we have

dn-dr = ryn,du®+ (ryn, + ryny)dudv + ryn,dv?

— —(rggndu?® + 2ry,ndudv + ry,ndv?),

and we get

« _ 1 Ldu?+2Mdudv+ Ndv? @

~ cos9 Edu?+2Fdudv+Gdp2® 77T

when

ds’> = dr?= (rydu + r,dv)?
= r2du® + 2ryr,dudv + rdv?
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and
E=r2, F=ryry,, G=r2
L=ryn, M =ry,n, N =r,,Nn.

We note that the quantitids, F, G, L, M, N only depend on properties of the surface
S with no reference to the space curve C on the surface. For all curves C that start out
from point P in the same direction, determined by the rdiia du, the angeb is the
same according to Eq. 4. Conversely, all space curves through P with the satie
has the same curvature at P.
If we choose® = 0, K is the curvature of a normal section, i.e. the principal normal
of the curve coincides with the normal to the surface,

_ Ldu?+2Mdudv + N dv?
~ Edu?2+ 2Fdudv + Gdv?’

Principal Curvature Sections

If K is known, Eq. 5 is a quadratic equation for the ratio: du, and may be written
(L — EK)du?+2(M — FK)dudv + (N — GK)dv?=0.  ...... (6)

If this equation has two distinct roots, there will be two normal sections with curvature
K. If it has only one root, there exist only one normal section with the given curvature,
and if there are no roots, no normal section exists with curvafur&o discern these
alternatives, we consider the expression

(M — FK)? — (L — EK)(N — GK)

that is under the square root sign when solving Eqg. 6. This expression is generally equal
to zero for two values oK, theprincipal curvatures K; and K. The corresponding
normal sections are called tipeincipal curvature sections.

After simplifying the last expression, we have to investigate the roots of

(EG— F)K? - (EN—-2FM +GL)K + (LN =M% =0. ...... 7)
Solving this equation we have to find the square root of
(EN —2FM + GL)?> — 4(EG — F?(LN — M?).

As will be shown, this expression is never negative. Let us assume chosen values for
E, F, G, L, N such that the last expression is a functiolvbf denoted byy(M). Itis
a polynomial of second degree with the derivative

¢'(M) = —4F(EN — 2FM + GL) + 8(EG — F)M,

and¢’(M) = 0forM = M1 = F(EN + GL)/2EG. Then¢”(M) = 8EG > 0,
from the definition ofE andG, i.e.¢(M) has a minimum aM = M, and after some

calculation
(EG — F)(EN - GL)?

EG -
5

p(M1) = 0,



SinCeEG — F2 = r2r2 — (ryr,)? = (ry x ry)? > 0. Actually, we will assume that
EG — F2 > 0 since otherwise, or r, is the null vector or they are parallel. Then
¢(M) can only be zero iEN = GL andM = My, i.,e.GM = FN. We then have

L N M

E G F’
and from Eq. 5 the curvatut¢ is independent aflu anddv and equal td_/E. A point
where the curvature is the same for all normal sections is callev@ point of the
surface.
For a point P on the surface that is not a navel point, Eqg. 7 will have two distinct
roots,K; andKs, as postulated above.

Principal Curvature Sections are Orthogonal

Substitution ofK = K1 or K = K into Eq. 6 results in a quadratic expression of the
general form(Adu + Bdwv)?, since the equation has single roots for these valués. of
Its derivative with respect tdv then has to be zero for the same value&othat is

(M — FK)du + (N — GK)dv =0,

or
_ Mdu + Ndv

~ Fdu+Gdv’
Substituting this expression into Eq. 6, we get

(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0.

From this equation we get the two directiothg; : du; anddwv; : duz (or the inverted
ratios if FN — GM = 0), for the two principal curvature sections. Using rules for the

sum and product of the roots of a quadratic equation, we get
dvy dvz_ EN - GL dvldvz_ EM - FL

dU1+dU2__FN—G|V|’ duidu, FN—-GM’
We also have

drq{ =ryduy +r,dvy, dro=rydus+r,duo,
and hence

dri-drp = r2duidup + ryr,(duidvs + dupdvg) 4 r2duvidv,
dv1 dvz dvlﬁ

N I S dui
|: + (dul + du2> +GdU1dU2] dujduy
EN - GL EM - FL
= |:E —F G ]dulduz

FN_GM  "EN_GM
E(FN —GM) -~ F(EN —GL) + G(EM — FL) _
FN — GM

U1dU2

= 0,



i.e. the principal curvature sections are orthogonal. (One can easily show that this is
the case also foF N — GM = 0).

A Theorem of Euler

A theorem of Euler[3] states that the curvature of an arbitrary normal section may
be expressed by the curvatures of the principal sectionsd&;eandds; be the arc
differentials of the two pricipal sections and the arc differential in a normal section

at an anglex with ds;, Fig. 2.

&
ds,

a ds,

P JQ

Figur 2: Arc differentials along a normal section and the two principal curvature
sections

Generally, if®(u, v) is a function ofu andv, we have
®(R)—d(P) =PR)— Q) + 2(Q) — ©(P),

or
PR —2(P) _ 2R —P(Qds n Q) —2(P)ds
ds o ds; ds dsp ds’

and lettingds; andds; approach zero,

d® dodgy N ddds, do cosa + do sin
— =0 +t———==7— —— Sinc.
ds ds;ds dspds ds; ds,

We now apply this general expressiorrtandn and get

dr .
t = — =t1cosa +trsSina
ds
dn dn cosa + dn sin
_— — —_— a’
ds dg; dsy
and by scalar multiplying these two expressions,
dn
—K = t—
ds
tdn coS o + tdn+t dn sina cosa +t dn sin?
e _ o _ —_— o —_ o
1ds1 1d52 2ds1 2d52
. dn dny .
= —Kjcofa — Kysifa + [ t;— +to— ) sina cosa.
dsy ds;
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Sincen -t; =n -ty = 0, we get

The curves @ and G are embedded in two orthogonal planges; t, = 0, andty
is independent o$,. Thereforedt;/ds, = 0 and likewisedt,/ds; = 0, and we get
Euler’s result

K=KicoSfa+ KoSiPa. oot (8)

Let us now choose another normal section at an amglerr /2 with ds; and denote
the corresponding arc differential las, since it is at an angle /2 with ds. For the
corresponding curvatur€ ; we get from Eq. 8

Ki = Kicof(a+7/2) + Kasirf(a + 7/2)
= K; sifa + Ko cofa.

By summation, we the get

K4+K|=Ki+Ko, e (9)

that is, the sum of the curvatures of two orthogonal normal sections is constant, equal
to the sum of the curvatures of the principal sections.

The Laplace Equation

The Laplace equation may be derived either by minimization of energy or by summing
all forces to zero. We will do both here although the concept of force in connection with
surface tension may be somewhat obscure. The force approach follows the derivation
of Defay and Prigogine[4] and the energy approach is taken from the book by Landau
and Lifshitz[5]. In both cases it is assumed that the interface is without thickness and
that the interfacial tension is constant.

Force Equilibrium

Consider a point P on the surface, Fig. 3, and draw a curve at a constant distance
from P. This curve forms the boundary of a cap for which we shall find the equilibrium
condition asp tends to zero.

Through P we draw the two principal curvature sections AB and CD on the surface.
Their radii of curvature at P ar®; and Ry. At the point A, an elemenél of the
boundary line is subjected to a foreél whose projection along the normal PN is

o8l sing = opdl = o L8,
Ry
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Figur 3: Equilibrium of a nonspherical cap.

since¢ by assumption is small.
If we consider four elemen® of the periphery at A, B, C, and D, they will con-

tribute with a force
2004l ! + .
o _— —_— .
PIONR TR,

Since this expression by Euler’s theorem, Eqg. 9, is independent of the choice of AB
and CD, it can be integrated around the circumference. Since four orthogonal elements
are considered, the integration is made over one quarter of a revolution to give

7p? ! + !
o\ — —_— .
P Ri R
The force on the surface element caused by the pressure difference over the surface

is given by(p1 — p2)7p?, and equating the last two expressions Laplace’s equation
follows.

Minimum Energy

Let the surface of separation undergo an infinitesimal displacement. At each point of

the undisplaced surface we draw the normal. The length of the segment of the normal
lying between the points where it intersects the displaced and undisplaced surfaces is
denoted bys¢. Then a volume element between the two sufaceg af , wheredf



is a surface element. Lgh; and p2 be the pressures in the two media, andsletoe
positive if the displacement of the surface is towards medium 2 (say). Then the work
necessary to bring about the change in volume is

/(— p1 + p2)écdf.

The total worksW in displacing the surface is obtained by adding to this the work
connected with the change in area of the surface. This part of the work is proportional
to the changéf in area of the surface, and ésSf, whereo is the surface tension.
Thus the total work is

SW = — /(p1 Cp)Sedf Fo8f. (10)

The condition for thermodynamical equilibrium is, of course, #at be zero.

Next, let Ry and Ry be the principal radii of curvature at a given point of the
surface. We seR; and R, as positive if they are drawn into medium 1. Then the
elements of length (the arc differentialdy; andds, on the surface in its principal
curvature sections are increased® + §¢)ds; /Ry and(Rx + §¢)dsp/ Ry when the
anglesds;/R; anddsp/ Ry remain constant, i.e., an expansion normal to the surface
(ds is the arc length of a circle with radiu?;, and correspondingly fads;). Hence
the surface elementf = ds;ds, becomes, after displacement,

ds; (14 6¢/Ry)ds(1+85/Re) = dsidsp(1+ 85 /Ry + 85 /Ro),

i.e. it changes by¢df (1/R; + 1/Ry). Hence we see that the total change in area of
the surface of separation is

5f :/5{ (Ril+Ri2)df. ........................ (11)

Substituting these expressions in Eq. 10 and equating to zero, we obtain the equilibri-
um condition in the form

1 1
/8€{(p1_p2)_0<ﬁl+ﬁz)}df =0.

This condition must hold for every infinitesimal displacement of the surface, i.e. for
all §¢. Hence the expression in braces must be identically equal to zero and Laplace’s
equation follows.

Nomenclatur e, for last section

f
I

area, m
length of arc, m
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pressure, Pa

principal radius of curvature, m
work, J

surface tension, N/m

length along normal, m

radius of cap, m

angle, radians

e\‘omQE:U'o

Subscripts

capillary

constant

adsorption (kg surfactant/kg rock)
interfacial tension, N/m

X 1R o

Operators

8 = infinitesimal change
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