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Sammendrag

This note presents a derivation of the Laplace equation which gives the rela-
tionship between capillary pressure, surface tension, and principal radii of curva-
ture of the interface between the two fluids.

First, several mathematical results of space curves and surfaces will be de-
rived as a necessary basis. It is shown that at each point of a surface there are
two principal, normal sections (two planes) that are perpendicular with the line of
intersection being the surface normal. The cuts of the two planes with the surface
define two space curves that each have their centers of curvature on the surface
normal.

The Laplace equation is derived (1) by the concept of virtual work to extend
the interface, and (2) by force balance on a surface element.

Introduction

The Laplace equation[1]

pc = σ

(
1

R1
+

1

R2

)
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

gives an expression for the capillary pressurepc, i.e. the pressure difference over an
interface between two fluids in terms of the surface tensionσ and the principal radii of
curvature,R1 and R2. This expression is often encountered in the literature covering
the concepts of capillary pressure and wettability since it is quite general.

The expression in parenthesis in Eq. 1 is a geometry factor. At equilibrium, each
point on the interface has the same geometry factor. The simple expression reflects
the fact that for an arbitrary,smooth surface, the curvature at any point is defined
by assigning radii of curvature,R1 and R2, in two planes, calledprincipal curvature
sections. The two planes are normal to each other and their line of intersection is the
surface normal at the chosen point. Also, the curvature of an arbitrary normal section
may be expressed in terms of the principle curvatures.
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With sufficient knowledge of the mathematical properties of surfaces, the Lapla-
ce equation may easily be derived either by the principle of minimum energy or by
requiring force equilibrium.

The nomenclature is only for the last section, the derivation of Laplace’s equation
from physical principles. In the first section, which covers mathematical properties of
curves and surfaces, all entities are dimensionless and defined in the text.

Curvature of Surfaces

Surface and Curves

Most of this section follows the exposition of space curves in the textbook by Tambs
Lyche[2].

Let r denote the radius vector from the origin of the Cartesian coordinate system
(x, y, z) with unit vectors(i, j, k). A surface S may be defined by the vector equation

r = f(u, v) = ϕ(u, v)i + ψ(u, v)j + χ(u, v)k, . . . . . . . . . . . . . . (2)

or in parameter form

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), . . . . . . . . . . . . . . . . (3)

whereϕ, ψ andχ are functions of the two parametersu andv. If the two first equa-
tions in Eq. 3 are solved foru andv and substituted in the third equation, we getz
expressed as a function ofx andy, the usual way to represent a surface. However, the
parameter form is a very useful representation of a surface for description of curvature
characteristics.

If we setu = u(t) andv = v(t) we get the vector equationr = f(t) for a curve (a
space curve) on the surface, or in parameter form:

x = ϕ(t), y = ψ(t), z = χ(t),

wheret is a parameter. By assumption, all functions are twice differentiable with con-
tinuous second order derivatives. A curve or surface represented by functions fulfilling
this requirement is calledsmooth.

Definitions

Arc Length. If f(t) is differentiable with continuous derivative in the interval [a,b],
then the arc lengthL is defined by

L =
∫ b

a
|ḟ(t)|dt,
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where the dot denotes differentiation with respect tot . If t ∈ [a, b] and we sets =∫ t
a |ḟ(t)|dt , we get the arc differentialds = |ḟ(t)|dt = ±|dr|. Thens is a continuous

function of t that increases from 0 toL when t increases froma to b. Instead oft ,
s could be used as a parameter to represent the curve. By thistaxameter form, many
formulas are especially simple, e.g.|r ′| = |dr/ds| = 1.

Tangent to a Curve. The vectort = dr/ds = r ′ is defined as thetangent vector
of the space curver = f(t). Since|t| = 1, t is a unity vector along the tangent of the
curve.

Curvature. Thecurvature K of a curve is defined byK = |dt/ds| = |d2r/ds2| =
|r ′′|, or simplyK = |f ′′(s)|, the curve being on taxameter form.

Radius of Curvature. The radius of curvatureR of a space curve C is defined by
R = 1/K .

Principal Normal to a Curve. The principal normal h of a curve is defined by
h = r ′′/|r ′′| = r ′′/K . Sincer ′2 = 1 it follows thatr ′ · r ′′ = 0, and henceh is normal
to t (and the curve).

Normal of a Surface. The surface normal n to a surface at a point is defined by
n = ru × rv/|ru × rv|. Hereru andrv denotes partial derivatives ofr with respect to
u andv, cf. Eq. 2. The total differentialdr is given by

dr = rudu + rvdv,

and for the space curve on the surface,u = u(t) andv = v(t). From the definition of
t, dr is alongt, and it is easily seen thatdr · n = 0. That is,n is normal to all curves
on the surface drawn through the selected point.

Normal Plane and Normal Section. A plane through the normal to a surface, i.e.
the normal is lying in the plane, is called anormal plane The cut between a normal
plane and the surface is a curve on the surface and is called anormal section.

Curvature of a Normal Section

Again, letr = f(u, v) a surface S andr = f(u(t), v(t)) a space curve C on S. From the
definitions, we haveK h = dt/ds. Multiplying by n gives

dt
ds

n = K cosθ,
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Figur 1: Surface S, curve C through point P, tangent to the curve, surface normal and
principal normal to the curve

whereθ is the angle between the principal normal to C and the surface normal at the
chosen point P, Fig. 1.

Sincen · t = 0, we get by differentiation

n
dt
ds

+
dn
ds

t = 0,

and thereby

K = −
1

cosθ

dn
ds

t = −
1

cosθ

dn · dr
ds2

.

From the definition ofn, we haverun = 0, rvn = 0. Differentiating with respect tou
andv, we get

runu + ruun = 0, rvnu + ruvn = 0,
runv + ruvn = 0, rvnv + rvvn = 0.

Since
dn = nudu + nvdv, dr = rudu + rvdv,

we have

dn · dr = runudu2 + (runv + rvnu)du dv + rvnvdv2

= −(ruun du2 + 2ruvn du dv + rvvn dv2),

and we get

K =
1

cosθ

L du2 + 2M du dv + N dv2

E du2 + 2F du dv + G dv2
, . . . . . . . . . . . . . . . . . . (4)

when

ds2 = dr2 = (rudu + rvdv)2

= r2
udu2 + 2rurvdudv + r2

vdv
2
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and
E = r2

u, F = rurv, G = r2
v,

L = ruun, M = ruvn, N = rvvn.

We note that the quantitiesE, F,G, L , M, N only depend on properties of the surface
S with no reference to the space curve C on the surface. For all curves C that start out
from point P in the same direction, determined by the ratiodv : du, the angelθ is the
same according to Eq. 4. Conversely, all space curves through P with the samet andh
has the same curvature at P.

If we chooseθ = 0, K is the curvature of a normal section, i.e. the principal normal
of the curve coincides with the normal to the surface,

K =
L du2 + 2M du dv + N dv2

E du2 + 2F du dv + G dv2
. . . . . . . . . . . . . . . . . . . . . . (5)

Principal Curvature Sections

If K is known, Eq. 5 is a quadratic equation for the ratiodv : du, and may be written

(L − E K ) du2 + 2(M − F K ) du dv + (N − GK ) dv2 = 0. . . . . . . (6)

If this equation has two distinct roots, there will be two normal sections with curvature
K . If it has only one root, there exist only one normal section with the given curvature,
and if there are no roots, no normal section exists with curvatureK . To discern these
alternatives, we consider the expression

(M − F K )2 − (L − E K )(N − GK )

that is under the square root sign when solving Eq. 6. This expression is generally equal
to zero for two values ofK , theprincipal curvatures K1 and K2. The corresponding
normal sections are called theprincipal curvature sections.

After simplifying the last expression, we have to investigate the roots of

(EG − F2)K 2 − (E N − 2F M + GL)K + (L N − M2) = 0. . . . . . . (7)

Solving this equation we have to find the square root of

(E N − 2F M + GL)2 − 4(EG − F2)(L N − M2).

As will be shown, this expression is never negative. Let us assume chosen values for
E, F,G, L , N such that the last expression is a function ofM, denoted byϕ(M). It is
a polynomial of second degree with the derivative

ϕ′(M) = −4F(E N − 2F M + GL)+ 8(EG − F2)M,

andϕ′(M) = 0 for M = M1 = F(E N + GL)/2EG. Thenϕ′′(M) = 8EG > 0,
from the definition ofE andG, i.e.ϕ(M) has a minimum atM = M1, and after some
calculation

ϕ(M1) =
(EG − F2)(E N − GL)2

EG
≥ 0,
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sinceEG − F2 = r2
ur2
v − (rurv)2 = (ru × rv)2 ≥ 0. Actually, we will assume that

EG − F2 > 0 since otherwiseru or rv is the null vector or they are parallel. Then
ϕ(M) can only be zero ifE N = GL andM = M1, i.e.G M = F N . We then have

L

E
=

N

G
=

M

F
,

and from Eq. 5 the curvatureK is independent ofdu anddv and equal toL/E . A point
where the curvature is the same for all normal sections is called anavel point of the
surface.

For a point P on the surface that is not a navel point, Eq. 7 will have two distinct
roots,K1 andK2, as postulated above.

Principal Curvature Sections are Orthogonal

Substitution ofK = K1 or K = K2 into Eq. 6 results in a quadratic expression of the
general form(Adu + Bdv)2, since the equation has single roots for these values ofK .
Its derivative with respect todv then has to be zero for the same values ofK , that is

(M − F K )du + (N − GK )dv = 0,

or

K =
Mdu + Ndv

Fdu + Gdv
.

Substituting this expression into Eq. 6, we get

(E M − F L)du2 + (E N − GL)dudv + (F N − G M)dv2 = 0.

From this equation we get the two directionsdv1 : du1 anddv2 : du2 (or the inverted
ratios if F N − G M = 0), for the two principal curvature sections. Using rules for the
sum and product of the roots of a quadratic equation, we get

dv1

du1
+

dv2

du2
= −

E N − GL

F N − G M
,

dv1

du1

dv2

du2
=

E M − F L

F N − G M
.

We also have
dr1 = rudu1 + rvdv1, dr2 = rudu2 + rvdv2,

and hence

dr1 · dr2 = r2
udu1du2 + rurv(du1dv2 + du2dv1)+ r2

vdv1dv2

=
[

E + F

(
dv1

du1
+

dv2

du2

)
+ G

dv1

du1

dv2

du2

]
du1du2

=
[

E − F
E N − GL

F N − G M
+ G

E M − F L

F N − G M

]
du1du2

=
E(F N − G M)− F(E N − GL)+ G(E M − F L)

F N − G M
du1du2

= 0,
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i.e. the principal curvature sections are orthogonal. (One can easily show that this is
the case also forF N − G M = 0).

A Theorem of Euler

A theorem of Euler[3] states that the curvature of an arbitrary normal section may
be expressed by the curvatures of the principal sections. Letds1 andds2 be the arc
differentials of the two pricipal sections andds the arc differential in a normal section
at an angleα with ds1, Fig. 2.

ds1

ds2

ds

α
P Q

R

Figur 2: Arc differentials along a normal section and the two principal curvature
sections

Generally, if8(u, v) is a function ofu andv, we have

8(R)−8(P) = 8(R)−8(Q)+8(Q)−8(P),

or
8(R)−8(P)

ds
=
8(R)−8(Q)

ds1

ds1

ds
+
8(Q)−8(P)

ds2

ds2

ds
,

and lettingds1 andds2 approach zero,

d8

ds
=

d8

ds1

ds1

ds
+

d8

ds2

ds2

ds
=

d8

ds1
cosα +

d8

ds2
sinα.

We now apply this general expression tor andn and get

t =
dr
ds

= t1 cosα + t2 sinα

dn
ds

=
dn
ds1

cosα +
dn
ds2

sinα,

and by scalar multiplying these two expressions,

−K = t
dn
ds

= t1
dn
ds1

· cos2 α +
(

t1
dn
ds2

+ t2
dn
ds1

)
sinα cosα + t2

dn
ds2

· sin2 α

= −K1 cos2 α − K2 sin2 α +
(

t1
dn
ds2

+ t2
dn
ds1

)
sinα cosα.
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Sincen · t1 = n · t2 = 0, we get

t1
dn
ds2

+ n
t1

ds2
= 0, t2

dn
ds1

+ n
t2

ds1
= 0.

The curves C1 and C2 are embedded in two orthogonal planes,t1 · t2 = 0, andt1

is independent ofs2. Thereforedt1/ds2 = 0 and likewisedt2/ds1 = 0, and we get
Euler’s result

K = K1 cos2 α + K2 sin2 α. . . . . . . . . . . . . . . . . . . . . . . . . . (8)

Let us now choose another normal section at an angleα + π/2 with ds1 and denote
the corresponding arc differential byds⊥ since it is at an angleπ/2 with ds. For the
corresponding curvatureK⊥ we get from Eq. 8

K⊥ = K1 cos2(α + π/2)+ K2 sin2(α + π/2)

= K1 sin2 α + K2 cos2 α.

By summation, we the get

K + K⊥ = K1 + K2, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

that is, the sum of the curvatures of two orthogonal normal sections is constant, equal
to the sum of the curvatures of the principal sections.

The Laplace Equation

The Laplace equation may be derived either by minimization of energy or by summing
all forces to zero. We will do both here although the concept of force in connection with
surface tension may be somewhat obscure. The force approach follows the derivation
of Defay and Prigogine[4] and the energy approach is taken from the book by Landau
and Lifshitz[5]. In both cases it is assumed that the interface is without thickness and
that the interfacial tension is constant.

Force Equilibrium

Consider a point P on the surface, Fig. 3, and draw a curve at a constant distanceρ

from P. This curve forms the boundary of a cap for which we shall find the equilibrium
condition asρ tends to zero.

Through P we draw the two principal curvature sections AB and CD on the surface.
Their radii of curvature at P areR1 and R2. At the point A, an elementδl of the
boundary line is subjected to a forceσδl whose projection along the normal PN is

σδl sinφ = σφδl = σ
ρ

R1
δl,
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Figur 3: Equilibrium of a nonspherical cap.

sinceφ by assumption is small.
If we consider four elementsδl of the periphery at A, B, C, and D, they will con-

tribute with a force

2ρσδl

(
1

R1
+

1

R2

)
.

Since this expression by Euler’s theorem, Eq. 9, is independent of the choice of AB
and CD, it can be integrated around the circumference. Since four orthogonal elements
are considered, the integration is made over one quarter of a revolution to give

πρ2σ

(
1

R1
+

1

R2

)
.

The force on the surface element caused by the pressure difference over the surface
is given by(p1 − p2)πρ

2, and equating the last two expressions Laplace’s equation
follows.

Minimum Energy

Let the surface of separation undergo an infinitesimal displacement. At each point of
the undisplaced surface we draw the normal. The length of the segment of the normal
lying between the points where it intersects the displaced and undisplaced surfaces is
denoted byδζ . Then a volume element between the two sufaces isδζd f , whered f
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is a surface element. Letp1 and p2 be the pressures in the two media, and letδζ be
positive if the displacement of the surface is towards medium 2 (say). Then the work
necessary to bring about the change in volume is

∫
(−p1 + p2)δζd f.

The total workδW in displacing the surface is obtained by adding to this the work
connected with the change in area of the surface. This part of the work is proportional
to the changeδ f in area of the surface, and isσδ f , whereσ is the surface tension.
Thus the total work is

δW = −
∫
(p1 − p2)δζd f + σδ f. . . . . . . . . . . . . . . . . . . . . (10)

The condition for thermodynamical equilibrium is, of course, thatδW be zero.
Next, let R1 and R2 be the principal radii of curvature at a given point of the

surface. We setR1 and R2 as positive if they are drawn into medium 1. Then the
elements of length (the arc differentials)ds1 andds2 on the surface in its principal
curvature sections are increased to(R1 + δζ )ds1/R1 and(R2 + δζ )ds2/R2 when the
anglesds1/R1 andds2/R2 remain constant, i.e., an expansion normal to the surface
(ds1 is the arc length of a circle with radiusR1, and correspondingly fords2). Hence
the surface elementd f = ds1ds2 becomes, after displacement,

ds1(1 + δζ/R1)ds2(1 + δζ/R2) ∼= ds1ds2(1 + δζ/R1 + δζ/R2),

i.e. it changes byδζd f (1/R1 + 1/R2). Hence we see that the total change in area of
the surface of separation is

δ f =
∫
δζ

(
1

R1
+

1

R2

)
d f. . . . . . . . . . . . . . . . . . . . . . . . . (11)

Substituting these expressions in Eq. 10 and equating to zero, we obtain the equilibri-
um condition in the form

∫
δζ

{
(p1 − p2)− σ

(
1

R1
+

1

R2

)}
d f = 0.

This condition must hold for every infinitesimal displacement of the surface, i.e. for
all δζ . Hence the expression in braces must be identically equal to zero and Laplace’s
equation follows.

Nomenclature, for last section

f = area, m2

l = length of arc, m
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p = pressure, Pa
R = principal radius of curvature, m

W = work, J
σ = surface tension, N/m
ς = length along normal, m
ρ = radius of cap, m
φ = angle, radians

Subscripts

c = capillary
α = constant
0 = adsorption (kg surfactant/kg rock)
γ = interfacial tension, N/m

Operators

δ = infinitesimal change
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