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Abstract. This paper deals with an initial-boundary value problem for the following one-
dimensional two-fluid system























nt + (nug)x = 0, x ∈ I = [0, 1], t > 0,

mt + (mul)x = 0,

αg [Pg]x = µg [ug]xx,

αl[Pl]x = µl[ul]xx, αl + αg = 1,

where n and m represent, respectively, gas mass and liquid mass; ug and ul are corresponding
fluid velocities whereas αg and αl are volume fractions occupied by the gas and liquid phase,
and Pg and Pl are pressures associated with them. The model represents a submodel of the
full two-fluid model studied in [5]. An important difference between the model studied in the
present work and that studied in [5] is that viscosity coefficients µl, µg are assumed to be
constant. Bresch et al assumed mass-dependent coefficients that allowed them to derive a so-
called BD inequality which implies that masses are in H1. Since we are excluded from following
that route, we instead explore how the use of two non-equal pressure functions Pg and Pl (i.e.,
Pl − Pg = f(m) 6= 0) allows us to obtain global estimates that guarantee a stability result to
hold. I.e., we prove that

m(·, t) → m̃, n(·, t) → ñ, ul(·, t), ug(·, t) → 0,

with respect to the norm in L∞(I) for constant states m̃ and ñ. Estimates of the time asymptotic
behavior are also provided.

Keyword: two-fluid model, non-equal pressure, capillary pressure, Navier-Stokes, existence,
stability
Subject classification: 76T10, 76N10, 65M12, 35L60

1. Introduction

This paper deals with a mathematical model for gas-liquid flow dynamics where the gas phase
is modelled as an ideal gas whereas the liquid phase is assumed to be weakly compressible. The
model is based on the so-called two-fluid formulation where the gas and liquid phase have separate
mass and momentum conservation equations. In particular, the momentum equations involve
a non-conservative pressure-related term, a viscous term and external force terms representing
gravity and friction between fluid and wall as well as interfacial friction. The model takes the
following form [18] (Chapter 10):

∂t(n) + ∂x(nug) = 0

∂t(m) + ∂x(mul) = 0

∂t(nug) + ∂x(nu
2
g) + αg∂xPg = −fgug − I(ug − ul)− ng + ∂x(µg∂xug)

∂t(mul) + ∂x(mu2
l ) + αl∂xPl = −flul + I(ug − ul)−mg + ∂x(µl∂xul).

(1.1)

Here n = αgρg and m = αlρl where the volume fractions satisfy

αl + αg = 1, (1.2)
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whereas ρl, ρg are densities and ul, ug are fluid velocities associated with the liquid and gas phase.
Moreover, the three first terms on the right hand side of the momentum equations represent,
respectively, wall friction with coefficients fg, fl; interfacial friction with coefficient I; and gravity
with gravity constant g. Finally, µg, µl are the viscosity coefficients.

Several challenges are associated with the model (1.1).

• The combination of different density-pressure laws corresponding to the different phases
gives rise to non-conventional, nonlinear pressure functions that can be a challenge to deal
with;

• Transition to single-phase regions, i.e, regions where m or n become zero, can happen
because the volume fractions αg, αl become zero and/or because densities ρg, ρl vanish
(formation of vacuum). Typically, we will need some uniform bounds on the masses m
and n in order to derive higher order estimates;

• The non-conservative pressure terms αg∂xPg and αl∂xPl often prevent from applying
arguments used for Navier-Stokes equations;

In [5] a model similar to (1.1) without external force terms is studied for two fluids described
by density-pressure relations of the form

Pg = Cgρ
γg
g , Pl = Clρ

γl

l , γg, γl > 1, Cg, Cl > 0,

together with the assumption of equal pressure, i.e., Pg = Pl = P . A key assumption in their
work is that the viscosity coefficients depend linearly on masses, i.e., are given as

µg = εgn, µl = εlm

for positive constants εg and εl. Thanks to this structure the model allows for deriving a so-called
BD entropy estimate, which in turn ensures estimates of the form

∫

([m1/2]2x + [n1/2]2x) ≤ C.

From these estimates the well-posedness is obtained as well as information about the long time
behavior. We refer also to the recent work [12] which also largely relies on this approach but in
a gas-liquid context where a polytropic gas law is used for the gas phase whereas the liquid is
assumed to be incompressible.

For the problem with constant viscosity coefficients µg, µl > 0 there seems to be very few, if
any, mathematical results on compressible two-fluid models, even in one dimension. The purpose
of this paper is to provide a first global result for that case. The approach we pursue is to include
a capillary pressure term, i.e., we do not assume that the two phase pressures Pg and Pl are equal.
The assumption about non-equal pressure functions Pg 6= Pl (in an appropriate sense) is quite
natural. This amounts to including capillary pressure forces and is commonly included in modeling
of two-phase flow i porous media. We refer to [3] for a classical approach and [19] and references
therein for a more recent discussion where non-equilibrium effects are taken into considerations.

Capillary pressure Pc is defined as the difference between the non-wetting (nw) fluid and the
wetting fluid (w),

Pc = Pnw − Pw.

In a gas-water system gas will be the non-wetting fluid, hence,

Pc = Pg − Pl = Pc(αl),

where Pc is decreasing as a function of the wetting phase volume fraction (saturation). Consistent
with this we will in our setting assume that

Pg − Pl = −f(m), (1.3)

where f ′(m) ≥ 0. In this work we shall analyse a reduced version of the full two-fluid model (1.1)
where the momentum equations have been simplified. More precisely, we consider the following
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generic two-fluid hyperbolic-elliptic system based on Stokes equations instead of the full momentum
equations:



















nt + (nug)x = 0,

mt + (mul)x = 0,

αg[Pg]x = µg[ug]xx,

αl[Pl]x = µl[ul]xx,

(1.4)

where the following constraints are imposed











αl + αg = 1,

Pl − Pg = f(m),

ρl = ρl0 +
Pl−Pl0

a2
l

, ρg =
Pg

a2
g
,

(1.5)

where f ∈ C2([0,∞)) and f ′ ≥ 0 on [0,∞). al and ag represent the sound of speed whereas ρl0
represents the density at the reference pressure Pl0. These are known parameters. Consider the
initial-boundary value conditions:

(m,n)(x, 0) = (m0, n0)(x) for x ∈ [0, 1] (1.6)

and

(ul, ug)(0, t) = (ul, ug)(1, t) = 0 for t ≥ 0. (1.7)

Finally, we mention that the full two-fluid model equipped with non-equal pressure functions is
discussed in the work [13]. We consider the reduced model (1.4) to clearly illustrate the distinct
role played by the capillary pressure-like term f which characterizes the difference between the
two pressures Pg and Pl.

It is also worth mentioning that the use of Stokes’ equations in combination with mass conser-
vation has been used as an alternative approach to the standard description of two-phase flow in
porous media based on Darcy’s law [16]. In fact there has been quite a lot of work done dealing
with this approach as an attempt to take into account certain viscous effects between fluid phases
which are ignored in more standard formulations. Hence, the model (1.4) is also of interest from
a more applied point of view.

1.1. Other related works. The use of non-equal pressure functions Pg 6= Pl in the context of
two-fluid modeling is not new. For example, the following inviscid model (no viscosity terms in
momentum equations) has been studied in [20] (see also [17]) from a numerical point of view:

∂t(αg) + ui∂x(αg) = qp(Pg − Pl)

∂t(n) + ∂x(nug) = 0

∂t(m) + ∂x(mul) = 0

∂t(nug) + ∂x(nu
2
g) + αg∂xPg + (Pg − Pig)∂xαg = Sg + qu(ul − ug)

∂t(mul) + ∂x(mu2
l ) + αl∂xPl + (Pl − Pil)∂xαl = Sl.

(1.8)

Herein an average interface velocity ui must be specified as well as some interfacial pressures Pig

and Pil. Moreover, Sg and Sl are the momentum external force terms whereas qp (and qu) is a
relaxation source term that will enforce more or less equality between the two pressures Pg and Pl

(and ug and ul) as qp (and qu) becomes sufficiently large. Thus, in this model the use of unequal
pressures is compensated for by adding a new equation for the volume fraction αg.

A similar two-fluid model was discussed in the recent paper [21]. In particular, the construction
of solutions of the Riemann problem was explored. The model was written in the form (using the
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same notation as before)

∂t(ρl) + ∂x(ρlul) = 0

∂t(n) + ∂x(nug) = 0

∂t(m) + ∂x(mul) = 0

∂t(nug) + ∂x(nu
2
g) + ∂x(αgPg) = Pg∂xαg

∂t(mul) + ∂x(mu2
l ) + ∂x(αlPl) = −Pg∂xαg.

(1.9)

The model is derived from a more complete model for gas-solid phase flow, see [2, 6]. Also for this
model non-equal pressure functions have been used combined with adding a new PDE equation,
in this case, for the solid phase density ρl.

Hence, our approach as reflected by relying on the algebraic relation (1.3), which instantly
enforces an equilibrium relation between Pg and Pl, seems to be novel and quite different from
what has been explored before in the context of inviscid compressible two-fluid modeling.

Finally, before we state the main result of this paper it is also relevant to mention some results
on a related gas-liquid model, the so-called drift-flux model. The model is similar to (1.1), however,
the two momentum equations have been added together to form a mixture momentum equation.
The loss of information about the separate fluid velocities are then compensated for by adding a
slip relation of the form ug = K[αgug + αlul] + S where K and S are known parameters. This
algebraic relation is used to obtain a model that has been useful for modeling of realistic gas-
liquid flow behavior in different contexts. In particular, the model is general enough to describe
important flow behavior where the gas and fluid velocities can be quite different. We refer to [18]
and references therein for more information on the model. In [9, 10] this model was analyzed in a
setting which involved a free interface separating the gas-liquid mixture from a gas-region whereas
in [11] well-posedness was discussed for the model in a closed conduit.

It is interesting to compare the two mentioned two-phase models with other two-phase formu-
lations based on Navier-Stokes equations. A more recent example is represented by the work of
Abels and Feireisl [1]. The system consists of the compressible Navier-Stokes equations govern-
ing the motion of a mixture of two fluids coupled with the Cahn-Hilliard equation for describing
the concentration difference. A general existence result was proved for a 3D model without any
restriction on the size of initial data. See also [15] and [8], and references therein, for many in-
teresting results in this direction. This two-phase model involves a common velocity in contrast
to the model two-fluid model (1.1) and the drift-flux model studied in [9, 10, 11]. The model has
many applications in areas where the two phases do not appear in a mixture, i.e., at one point in
space only one of the phases can be present.

1.2. Main results. The main result in the paper is concerned about global stability of the so-
lutions near a constant equilibrium state. First, we introduce some notations. Denote I = [0, 1],

m̃ =

∫

I

m0 dx, ñ =

∫

I

n0 dx. The following (weak) structural assumptions related to the pressure

difference f(m) close to 0 and the constant equilibrium state (m̃, ñ), are needed (see also Remark
2.3):

ρl0 −
Pl0

a2l
+ f(0) > 0, 0 < f ′(m̃) ≤ a2l , (1.10)

where f ∈ C2([0,∞)) and f ′ ≥ 0. Then, we have the following result.

Theorem 1.1. Assume that m0 ∈ H1 where m̃ > 0, n0 ∈ H1 and inf
x∈[0,1]

n0 = A0 > 0 and (1.10)

holds. Then there exists a positive constant ε0, such that the system (1.4) with initial-boundary
conditions (1.6) and (1.7) where

∫

I(m
2
0x + n2

0x) ≤ ε0, has a global solution (m,n, ul, ug):
More precisely,

(m,n) ∈
[

C([0,∞);H1)
]2 ∩

[

C1([0,∞);L2)
]2
, (ul, ug) ∈

[

C([0,∞);H2)
]2

and there are constants N1, N2 > 0 and M1 > 0 (independent of time t) such that

0 ≤ m ≤ M1, 0 < N1 ≤ n ≤ N2. (1.11)
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Here the initial data and upper and lower bounds N1, N2, and M1 are related to the constant states
m̃ and ñ by the following inequalities:

0 < m̃ ≤ sup
I

m0 < M1, N1 < inf
I
n0 ≤ ñ ≤ sup

I
n0 < N2. (1.12)

Furthermore, it follows that the solution is globally stable near the constant equilibrium state (m̃,
ñ, 0, 0) in the sense that

‖(m− m̃, n− ñ)‖H1 + ‖(ul, ug)‖H2 ≤ C exp{−Ct}, (1.13)

for all time, where C is a positive constant depending on the initial data and some other known
constant but independent of t.

The consequence of this result is that we have a complete description of the long time behavior
of (n,m, ug, ul) given that the initial masses are sufficiently small in H1. In particular, in view of
the inequality

|m0 − m̃| ≤
∫

I

|m0x|dx ≤ ‖m0x‖L2 ≤ ε0,

and similarly for n0, it follows that the equilibria (m̃, ñ, 0, 0) attracts all solutions emanating from
the initial data (m0, n0) as long as the distance to the equilibria is sufficiently small and (1.10)
and (1.12) holds.

The assumption about non-equal pressure Pl 6= Pg is weak in the sense that we only require
that the difference f(m) between Pl and Pg locally around the equilibria state m̃ is increasing,
i.e., f ′(m̃) > 0.

Outline of our approach. Under the uniform a priori assumptions of m and n as given by
(4.58) in Proposition 4.1, we can obtain an estimate of the form (C1, C2, C3 > 0)

d

dt

(

∫ 1

0

(C1[mx]
2 + C2[nx]

2)
)

+ C∗

∫ 1

0

(C1[mx]
2 + C2[nx]

2)

≤ C3

[

∫ 1

0

(C1[mx]
2 + C2[nx]

2)
]1/2([

∫ 1

0

(C1[mx]
2 + C2[nx]

2)
]1/2

+ 1
)

∫ 1

0

(C1[mx]
2 + C2[nx]

2),

where C∗ is a positive constant thanks to the fact (essentially) that f ′(m̃) > 0, see (1.10) for the
precise statement. It follows that this inequality entails stabilization of mx and nx in L2 under
appropriate smallness assumption on initial masses m0 and n0 in H1 in the sense that we can find
an ε1 > 0 such that (Lemma 4.3)

∫

(m2
x + n2

x) ≤ ε1.

Armed with this result we can then close the a priori assumption of Proposition 4.1 which paves
the way for proving the existence part of Theorem 1.1 by standard continuity arguments. The
asymptotic estimates are a by-product of this analysis as expressed by Lemmas 4.6, 4.7 and 4.8.

The structure of this work is as follows. In Section 2 we provide a local existence result. Then in
Section 3, as a preparation for the global estimates we introduce a reformulation of the model that
will facilitate the analysis. In Section 4 we give the proof of Theorem 1.1 in terms of Proposition
4.1 (which in turn rely on the results of Lemma 4.2, 4.3, and 4.5). The asymptotic estimates of
(m,n, ul, ug) follow from Lemma 4.6, 4.7 and 4.8.

2. Local existence

The main objective of this section is to prove a local existence result. For that purpose we will
need to control Pgx and Plx in some appropriate norms. In particular, it is then necessary with a

more precise understanding of how to bound the quantities
∂ρg

∂m and
∂ρg

∂n . In the next subsection
we provide such insight before we give details of the local existence result in Section 2.2.
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2.1. Relationships between (ρl, ρg) and (m,n). (1.5) implies that

ρl =
a2g
a2l

ρg + ρl0 −
Pl0

a2l
+

f(m)

a2l
(2.14)

and

mρg + nρl = ρlρg. (2.15)

Substituting (2.14) into (2.15), we have

a2g
a2l

ρ2g − bρg − c = 0, (2.16)

where






b
.
= b(m,n) = m+

a2
g

a2
l

n+ Pl0

a2
l

− ρl0 − f(m)
a2
l

,

c
.
= c(m,n) = n

[

ρl0 − Pl0

a2
l

+ f(m)
a2
l

]

.
(2.17)

From (2.16), we obtain

ρg =
a2l
2a2g

[

b±
√

b2 +
4ca2g
a2l

]

.

We need to find some conditions such that we can get a unique, non-negative ρg. Since ρl0− Pl0

a2
l

+

f(0) > 0 and f ′ ≥ 0 on [0,∞), then c ≥ 0 and thus










ρg =
a2
l

2a2
g

[

b+

√

b2 +
4ca2

g

a2
l

]

, αg = n
ρg

ρl =
a2
g

a2
l

ρg + ρl0 − Pl0

a2
l

+ f(m)
a2
l

, αl =
m
ρl
.

(2.18)

Remark 2.1. For later use we need some understanding of what is needed to bound
∂ρg

∂m and
∂ρg

∂n .
Direct calculations give

∂ρg(m,n)

∂m
=

a2l
2a2g









1− f ′(m)

a2l
+

2b
(

1− f ′(m)
a2
l

)

+
4nf ′(m)a2

g

a4
l

2

√

b2 +
4ca2

g

a2
l









and

∂ρg(m,n)

∂n
=

a2l
2a2g











a2g
a2l

+

2a2
gb

a2
l

+
4a2

g

[

ρl0−
Pl0
a2
l

+ f(m)

a2
l

]

a2
l

2

√

b2 +
4ca2

g

a2
l











=
1

2
+

b+ 2
[

ρl0 − Pl0

a2
l

+ f(m)
a2
l

]

2

√

b2 +
4ca2

g

a2
l

.

In particular, in view of (2.17) and first part of (1.10) we conclude that b2 + 4c
a2
g

a2
l

≥ 4c
a2
g

a2
l

has a

positive lower limit if

0 ≤ m ≤ M, 0 <
1

N
≤ n ≤ N,

for some M,N > 0 from which we also can conclude that
∣

∣

∣

∂ρg

∂m

∣

∣

∣ and
∣

∣

∣

∂ρg

∂n

∣

∣

∣ are bounded. Addi-

tionally, it also follows that ρg has a positive lower limit, i.e., αg = n
ρg

has an upper bound, and

consequently 0 ≤ n
ρg
, m
ρl

≤ 1.

Remark 2.2. In Lemma 4.3 we will need that α̃l = αl(m̃, ñ) > 0 and α̃g = αg(m̃, ñ) > 0. This
follows directly from (2.18) and Remark 2.1 since m̃, ñ > 0.
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Remark 2.3. In Lemma 4.3 it is crucial that
∂ρg(m̃,ñ)

∂m > 0. From the assumption that

1− f ′(m̃)/a2l > 0 it follows that

∂ρg(m̃, ñ)

∂m
>

a2l
2a2g









[

1− f ′(m̃)

a2l

]

+
[

1− f ′(m̃)

a2l

] b
√

b2 +
4ca2

g

a2
l









=
a2l
2a2g

[

1−f ′(m̃)

a2l

]









1 +
b

√

b2 +
4ca2

g

a2
l









≥ 0

since c(m̃, ñ) > 0, see (2.17) and (1.10).

2.2. A local existence result. The statement of the theorem on local existence of the solution
as in Theorem 1.1 is as follows:

Theorem 2.4. Assume that m0 ∈ H1, n0 ∈ H1 and inf
x∈[0,1]

n0 = A0 > 0. Then there exists a

positive constant T0, such that the system (1.4) with initial-boundary conditions (1.6) and (1.7)
has a solution (m,n, ul, ug) on [0, 1]× [0, T0] in the sense that

(m,n) ∈
[

C([0, T0];H
1)
]2 ∩

[

C1([0, T0];L
2)
]2
, (ul, ug) ∈

[

C([0, T0];H
2)
]2
.

We are going to apply the iteration arguments to prove Theorem 2.4.

Proof of Theorem 2.4:

Denote

S , ST0,A1 =
{

v ∈ C([0, T0];H
1
0 ∩H2)

∣

∣

∣‖v‖C([0,T0];H2) ≤ AµA1

}

where Aµ = max{ 1
µl
, 1
µg

}. The constants A1 and T0 are specified such that they satisfy (2.33)

and (2.48), respectively. Note that C2 in (2.33) only depends on initial data and known model
parameters.

Step 1: construct an iteration sequence.

Following the similar arguments in [7], we construct an iteration sequence as follows:


















nk
t + (nkuk−1

g )x = 0,

mk
t + (mkuk−1

l )x = 0,

αk
g [P

k
g ]x = µg[u

k
g ]xx,

αk
l [P

k
l ]x = µl[u

k
l ]xx, (x, t) ∈ (0, 1)× (0, T0],

(2.19)

with the initial-boundary value conditions:

(mk, nk)(x, 0) = (m0, n0)(x) for x ∈ [0, 1] (2.20)

and

(uk
l , u

k
g)(0, t) = (uk

l , u
k
g)(1, t) = 0 for t ≥ 0, (2.21)

for k = 1, 2, 3, ... and (u0
g, u

0
l ) = (0, 0), where αk

g = αg(m
k, nk), αk

l = αl(m
k, nk), P k

g = Pg(m
k, nk),

P k
l = Pl(m

k, nk), and

(mk, nk) ∈
[

C([0, T0];H
1)
]2 ∩

[

C1([0, T0];L
2)
]2
, (uk

g , u
k
l ) ∈

[

C([0, T0];H
1
0 ∩H2)

]2
.

Moreover, we have

mk ≥ inf
x∈[0,1]

m0(x) exp

{

−
∫ T0

0

‖uk−1
l,x (s)‖L∞ds

}

(2.22)

and

nk ≥ inf
x∈[0,1]

n0(x) exp{−
∫ T0

0

‖uk−1
g,x (s)‖L∞ds}. (2.23)
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In the following we will obtain estimates of {mk, nk, uk
l , u

k
g} that are independent of k.

Step 2: boundedness of the sequence.

Assume that uk−1
l , uk−1

g ∈ S. To prove ui
l, u

i
g ∈ S for all i = 0, 1, 2, 3, ..., it suffices to prove

uk
l , u

k
g ∈ S.

In fact, since uk−1
g ∈ S, (2.23) gives

nk ≥ A0 exp{−C1AµT0} ≥ A0e
−1 > 0, (2.24)

where C1 is a generic positive constant depending only on A1 and the initial data, and

T0 ≤ 1

C1Aµ
, T1. (2.25)

Differentiating (2.19)1 with respect to x, multiplying the result by 2nk
x, and integrating by parts

over [0, 1]× [0, t] for t ≤ T0, we have
∫ 1

0

|nk
x|2 =

∫ 1

0

|n0,x|2 − 3

∫ t

0

∫ 1

0

|nk
x|2uk−1

g,x − 2

∫ t

0

∫ 1

0

nknk
xu

k−1
g,xx

≤
∫ 1

0

|n0,x|2 + C1Aµ

∫ t

0

∫ 1

0

|nk
x|2 + 2

∫ t

0

‖nk‖L∞

(∫ 1

0

|nk
x|2

)

1
2
(∫ 1

0

|uk−1
g,xx|2

)

1
2

≤
∫ 1

0

|n0,x|2 + C1AµT0 max
t∈[0,T0]

∫ 1

0

|nk
x|2 + C1AµT0,

(2.26)

where we have used the facts that uk−1
g ∈ S and that

∫ 1

0

nk =

∫ 1

0

n0, and the Poincaré type

inequality

‖nk‖L∞ ≤ ‖nk −
∫ 1

0

nk‖L∞ +

∫ 1

0

n0 ≤ ‖nk
x‖L2 +

∫ 1

0

n0. (2.27)

Taking the maximum of both sides of (2.26) over [0, T0], we have

max
t∈[0,T0]

∫ 1

0

|nk
x|2 ≤ 2

∫ 1

0

n2
0,x + C1AµT0, (2.28)

where we have used

T0 ≤ min{T1,
1

2C1Aµ
} , T2. (2.29)

On the other hand, using (2.27) and Hölder inequality, we have
∫ 1

0

|nk|2 ≤ ‖nk‖2L∞ ≤
∫ 1

0

|nk
x|2 +

∫ 1

0

n2
0. (2.30)

(2.28) and (2.30) give

max
t∈[0,T0]

‖nk(·, t)‖2H1 ≤ 5‖n0‖2H1 + 2C1AµT0 ≤ 5‖n0‖2H1 + 1. (2.31)

Similarly, we have

max
t∈[0,T0]

‖mk(·, t)‖2H1 ≤ 5‖m0‖2H1 + 2C1AµT0 ≤ 5‖m0‖2H1 + 1, (2.32)

provided that T0 ≤ T2.
Using (2.19)3-(2.19)4, the standard elliptic estimates, (2.24), (2.27) (as well as the same kind

of estimate for mk), Remark 2.1, and (2.31)-(2.32), we have

‖uk
g‖H2 ≤ C2Aµ and ‖uk

l ‖H2 ≤ C2Aµ,

where C2 depends on A0 and the initial data, but is independent of A1 and T0. Let

A1 ≥ C2, (2.33)
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we have uk
l , u

k
g ∈ S provided that T0 ≤ T2. Thus ui

l, u
i
g ∈ S for all i provided that T0 ≤ T2.

Besides, we get (2.31) and (2.32) for all k provided that T0 ≤ T2.

Step 3: Compactness arguments.

Since we have ui
l, u

i
g ∈ S for all i and (2.31)-(2.32), then there exist a subsequence ki (i =

1, 2, 3, ...) and a (ul, ug,m, n), such that

(uki

l , uki
g ) ⇀ (ul, ug) weak-* in

[

L∞([0, T0];H
1
0 ∩H2)

]2
,

nki ⇀ n weak-* in L∞([0, T0];H
1),

mki ⇀ m weak-* in L∞([0, T0];H
1),

(nki

t ,mki

t ) ⇀ (nt,mt) weak-* in
[

L∞([0, T0];L
2)
]2

(2.34)

as ki → ∞, where

(ul, ug,m, n) ∈ L∞([0, T0];H
2)× L∞([0, T0];H

2)× L∞([0, T0];H
1)× L∞([0, T0];H

1),

and nt,mt ∈ L∞([0, T0];L
2). Using the Aubin-Lions’s compactness theorem, we can obtain strong

convergence. More precisely, there exists a subsequence still denoted by ki without loss of gener-
ality (i = 1, 2, 3, ...), such that

nki → n in C([0, 1]× [0, T0]),

mki → m in C([0, 1]× [0, T0]),
(2.35)

as ki → ∞. (2.35)1 and (2.24) give

n(x, t) ≥ A0e
−1 > 0 (2.36)

for any (x, t) ∈ [0, 1]× [0, T0].

Step 4: convergence of (uki−1
l , uki−1

g ).

We have shown convergence of (uki

l , uki
g ), however, we must also demonstrate convergence of

(uki−1
l , uki−1

g ) to the same limit functions since both are used in the linearized system (2.19). To

that end, denote m̄k+1 = mk+1 −mk and n̄k+1 = nk+1 − nk. Then
{

m̄k+1
t + m̄k+1

x uk
l +mk

x(u
k
l − uk−1

l ) + m̄k+1[uk
l ]x +mk(uk

l − uk−1
l )x = 0,

m̄k+1(x, 0) = 0
(2.37)

and
{

n̄k+1
t + n̄k+1

x uk
g + nk

x(u
k
g − uk−1

g ) + n̄k+1[uk
g ]x + nk(uk

g − uk−1
g )x = 0,

n̄k+1(x, 0) = 0
(2.38)

for (x, t) ∈ [0, 1]× [0, T0].
Multiplying (2.37) by 2m̄k+1, and integrating the result over [0, 1], we have

d

dt

∫ 1

0

|m̄k+1|2 =− 2

∫ 1

0

m̄k+1mk
x(u

k
l − uk−1

l )−
∫ 1

0

|m̄k+1|2[uk
l ]x

− 2

∫ 1

0

m̄k+1mk(uk
l − uk−1

l )x

≤2‖uk
l − uk−1

l ‖L∞‖m̄k+1‖L2‖mk
x‖L2 + ‖[uk

l ]x‖L∞‖m̄k+1‖2L2

+ 2‖mk‖L∞‖(uk
l − uk−1

l )x‖L2‖m̄k+1‖L2

≤C3‖(uk
l − uk−1

l )x‖L2‖m̄k+1‖L2 + C3Aµ‖m̄k+1‖2L2 ,

(2.39)
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where C3 depends only on the initial data and A1. Here we have used (2.32), the fact that uk
l ∈ S,

and the Poincaré inequality. Similarly, we have

d

dt

∫ 1

0

|n̄k+1|2 ≤ C3‖(uk
g − uk−1

g )x‖L2‖n̄k+1‖L2 + C3Aµ‖n̄k+1‖2L2 . (2.40)

We see that uk
l − uk−1

l solves the equation

µl[u
k
l − uk−1

l ]xx = αk
l [P

k
l ]x − αk−1

l [P k−1
l ]x = (αk

l − αk−1
l )[P k

l ]x + αk−1
l [P k

l − P k−1
l ]x. (2.41)

Multiplying (2.41) by 1
µl
(uk

l − uk−1
l ), and integrating by parts over [0, 1], we have

∫ 1

0

|[uk
l − uk−1

l ]x|2

=− 1

µl

∫ 1

0

(uk
l − uk−1

l )(αk
l − αk−1

l )[P k
l ]x − 1

µl

∫ 1

0

(uk
l − uk−1

l )αk−1
l [P k

l − P k−1
l ]x

=− 1

µl

∫ 1

0

(uk
l − uk−1

l )(αk
l − αk−1

l )[P k
l ]x +

1

µl

∫ 1

0

(uk
l − uk−1

l )[αk−1
l ]x(P

k
l − P k−1

l )

+
1

µl

∫ 1

0

(uk
l − uk−1

l )xα
k−1
l (P k

l − P k−1
l ).

(2.42)

Note that

|αk
l − αk−1

l | ≤ C4(|m̄k|+ |n̄k|) and |P k
l − P k−1

l | ≤ C4(|m̄k|+ |n̄k|)

for some positive constant C4 depending only on A0 and the initial data. This together with the
Poincaré inequality, Hölder inequality and (2.42) implies that

∫ 1

0

|(uk
l − uk−1

l )x|2 ≤C4

µl
‖(uk

l − uk−1
l )x‖L2(‖m̄k‖L2 + ‖n̄k‖L2)‖[P k

l ]x‖L2

+
C4

µl
‖(uk

l − uk−1
l )x‖L2‖[αk−1

l ]x‖L2(‖m̄k‖L2 + ‖n̄k‖L2)

+
C4

µl
‖(uk

l − uk−1
l )x‖L2(‖m̄k‖L2 + ‖n̄k‖L2).

(2.43)

Note that

Plx =
[

a2g
∂ρg
∂m

+ f ′(m)
]

mx + a2g
∂ρg
∂n

nx

and

αlx = −αgx = − ∂

∂x

n

ρg(m,n)
=

n

ρ2g

∂ρg
∂m

mx −
[ 1

ρg
− n

ρ2g

∂ρg
∂n

]

nx.

Since [P k
l ]x and [αk−1

l ]x are bounded in L2 due to (2.24), Remark 2.1, (2.31) and (2.32), (2.43)
together with the Cauchy inequality gives

∫ 1

0

|(uk
l − uk−1

l )x|2 ≤C5

µ2
l

(‖m̄k‖2L2 + ‖n̄k‖2L2), (2.44)

where C5 is a positive constant depending only on A0 and the initial data. Similarly, we have
∫ 1

0

|(uk
g − uk−1

g )x|2 ≤C5

µ2
g

(‖m̄k‖2L2 + ‖n̄k‖2L2). (2.45)

Combining (2.39), (2.40), (2.44) and (2.45) with Cauchy inequality, we have

d

dt

∫ 1

0

(|m̄k+1|2 + |n̄k+1|2) ≤ C6Aµ(‖m̄k‖2L2 + ‖n̄k‖2L2) + C6Aµ(‖m̄k+1‖2L2 + ‖n̄k+1‖2L2), (2.46)
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where C6 is a positive constant depending only on C3 and C5. Integrating (2.46) over [0, t] for any
given t ∈ [0, T0], and taking the maximum on both sides, we have

max
t∈[0,T0]

(‖m̄k+1‖2L2 + ‖n̄k+1‖2L2) ≤ 1

2
max

t∈[0,T0]
(‖m̄k‖2L2 + ‖n̄k‖2L2), (2.47)

provided

T0 ≤ min{T2,
1

3C6Aµ
} , T3. (2.48)

Using (2.47), (2.31) and (2.32), we get

max
t∈[0,T0]

(‖m̄k+1‖2L2 + ‖n̄k+1‖2L2) ≤
(

1

2

)k−1

max
t∈[0,T0]

(‖m̄2‖2L2 + ‖n̄2‖2L2) ≤ C7

(

1

2

)k−1

, (2.49)

for all k, where C7 is a positive constant depending only on the initial data. (2.44), (2.45) and
(2.49) give

‖(uk
l − uk−1

l )x‖2L2 ≤ C5C7

µ2
l

(

1

2

)k−2

, (2.50)

and

∫ 1

0

|(uk
g − uk−1

g )x|2 ≤C5C7

µ2
g

(

1

2

)k−2

. (2.51)

(2.50) and (2.51) combined with (2.34)1 imply that

(uki−1
l , uki−1

g ) ⇀ (ul, ug) weak-* in
[

L∞([0, T0];H
1
0 )
]2

(2.52)

as ki → ∞.

Step 5: conclusion

Based on (2.34), (2.35) and (2.36) in Step 3, it is easy to verify

µg[ug]xx = αg[Pg]x,

µl[ul]xx = αl[Pl]x,
(2.53)

a.e. in [0, 1]× [0, T0], since

(αki
g , αki

l , P ki
g , P ki

l ) → (αg, αl, Pg, Pl) in C([0, 1]× [0, T0]),

as ki → ∞, and [P ki
g ]x and [P ki

l ]x are bounded in L∞([0, T0];L
2), where αg = αg(m,n), αl =

αl(m,n), Pg = Pg(m,n), Pl = Pl(m,n).
Using (2.34)4, (2.35), (2.52) and the regularity of (m,n, ul, ug), we get

nt + (nug)x = 0,

mt + (mul)x = 0,
(2.54)

a.e. in [0, 1]× [0, T0]. (2.35) and (2.34)1 ensure that (m,n) and (ul, ug) satisfy the initial condition
and the boundary condition,respectively. The continuity in time of (m,n, ul, ug) can be obtained
by using the similar arguments for instance as [7]. Thus, we get a solution (m,n, ul, ug) which
solves (1.4), (1.6) and (1.7) on [0, 1] × [0, T0] in the settings as in Theorem 2.4. The uniqueness
was done implicitly in Step 4.
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3. Reformulation

Recall from Section 1 that I = [0, 1], m̃ =

∫

I

m0 dx, ñ =

∫

I

n0 dx, m̄ = m− m̃ and n̄ = n− ñ.

Then (m̄, n̄, ul, ug) satisfies


















n̄t + n̄xug + n̄(ug)x + ñ(ug)x = 0,

m̄t + m̄xul + m̄(ul)x + m̃(ul)x = 0,

a2gαg[ρg]x = µg[ug]xx,

a2gαl[ρg]x + αlf
′(m)mx = µl[ul]xx.

(3.55)

Denote α̃l = αl(m̃, ñ), α̃g = αg(m̃, ñ), ρ̃l = ρl(m̃, ñ), ρ̃g = ρg(m̃, ñ). Then (3.55) is reformulated
as follows:































n̄t + n̄xug + n̄(ug)x + ñ(ug)x = 0,

m̄t + m̄xul + m̄(ul)x + m̃(ul)x = 0,

a2g(αg − α̃g)[
∂ρg

∂m m̄x +
∂ρg

∂n n̄x] + a2gα̃g[
∂ρg

∂m m̄x +
∂ρg

∂n n̄x] = µg[ug]xx,

a2g(αl − α̃l)[
∂ρg

∂m m̄x +
∂ρg

∂n n̄x] + a2gα̃l[
∂ρg

∂m m̄x +
∂ρg

∂n n̄x] + αlf
′(m)mx = µl[ul]xx.

(3.56)

We will obtain the following refined version:


















































n̄t + ñ(ug)x = −n̄xug − n̄(ug)x,

m̄t + m̃(ul)x = −m̄xul − m̄(ul)x,

G1(m,n, m̃, ñ)m̄x +G2(m,n, m̃, ñ)n̄x + a2gα̃g[
∂ρg(m̃,ñ)

∂m m̄x +
∂ρg(m̃,ñ)

∂n n̄x]

= µg[ug]xx,

G3(m,n, m̃, ñ)m̄x +G4(m,n, m̃, ñ)n̄x + a2gα̃l[
∂ρg(m̃,ñ)

∂m m̄x +
∂ρg(m̃,ñ)

∂n n̄x]

+α̃lf
′(m̃)m̄x = µl[ul]xx,

(3.57)

where

G1(m,n, m̃, ñ) = a2g(αg − α̃g)
∂ρg(m,n)

∂m
+ a2gα̃g

(

∂ρg(m,n)

∂m
− ∂ρg(m̃, ñ)

∂m

)

,

G2(m,n, m̃, ñ) = a2g(αg − α̃g)
∂ρg(m,n)

∂n
+ a2gα̃g

(

∂ρg(m,n)

∂n
− ∂ρg(m̃, ñ)

∂n

)

,

G3(m,n, m̃, ñ) = a2g(αl − α̃l)
∂ρg(m,n)

∂m
+ a2gα̃l

(

∂ρg(m,n)

∂m
− ∂ρg(m̃, ñ)

∂m

)

+ αlf
′(m)− α̃lf

′(m̃),

and

G4(m,n, m̃, ñ) = a2g(αl − α̃l)
∂ρg(m,n)

∂n
+ a2gα̃l

(

∂ρg(m,n)

∂n
− ∂ρg(m̃, ñ)

∂n

)

.

4. Proof of Theorem 1.1

Let C denote a generic constant that is independent of time t but that may depend on some
known constants, and T ∗ denote the maximum time for the existence of solutions as in Theorem
2.4. Theorem 2.4 implies that T ∗ > 0. To prove the global existence, it suffices to show that
T ∗ = ∞. For otherwise, i.e., T ∗ < ∞, it will lead to a contradiction based on the following
estimates.

Proposition 4.1. Under the conditions of Theorem 1.1, for any T < T ∗, if

N1 ≤ n ≤ N2 and m ≤ M1, (4.58)

then

N̄1 ≤ n ≤ N̄2 and m ≤ M̄1, (4.59)
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in I × [0, T ], provided that

∫

I

(m2
0x + n2

0x) ≤ ε0 for some ε0 > 0. Here N1 < N̄1 < inf
x∈I

n0 ≤ ñ,

ñ ≤ sup
x∈I

n0 < N̄2 < N2, and m̃ ≤ sup
x∈I

m0 < M̄1 < M1.

The proof of Proposition 4.1 is divided into the following Lemmas 4.2, 4.3 and 4.5.

Lemma 4.2. Under the assumptions of Proposition 4.1, it holds that






























µg‖[ug]x‖L∞ ≤ C(‖m̄‖L∞ + ‖n̄‖L∞)(‖mx‖L1 + ‖nx‖L1 + 1),

µl‖[ul]x‖L∞ ≤ C(‖m̄‖L∞ + ‖n̄‖L∞)(‖mx‖L1 + ‖nx‖L1 + 1),

µl‖[ul]xx‖L2 ≤ C (‖mx‖L2 + ‖nx‖L2) ,

µg‖[ug]xx‖L2 ≤ C (‖mx‖L2 + ‖nx‖L2) ,

(4.60)

for a.e. t ∈ [0, T ].

Proof. Based on (3.57)3, (3.57)4 and the boundary condition, the solutions to (3.57)3 and (3.57)4
can be written respectively as follows

µgug =

∫ x

0

∫ y

0

G1(m,n, m̃, ñ)mx − x

∫ 1

0

∫ y

0

G1(m,n, m̃, ñ)mx+

∫ x

0

∫ y

0

G2(m,n, m̃, ñ)nx − x

∫ 1

0

∫ y

0

G2(m,n, m̃, ñ)nx+

a2gα̃g

∫ x

0

[
∂ρg(m̃, ñ)

∂m
m+

∂ρg(m̃, ñ)

∂n
n]− a2gα̃gx

∫ 1

0

[
∂ρg(m̃, ñ)

∂m
m+

∂ρg(m̃, ñ)

∂n
n]

(4.61)

and

µlul =

∫ x

0

∫ y

0

G3(m,n, m̃, ñ)mx − x

∫ 1

0

∫ y

0

G3(m,n, m̃, ñ)mx+

∫ x

0

∫ y

0

G4(m,n, m̃, ñ)nx − x

∫ 1

0

∫ y

0

G4(m,n, m̃, ñ)nx+

a2gα̃l

∫ x

0

[
∂ρg(m̃, ñ)

∂m
m+

∂ρg(m̃, ñ)

∂n
n]− a2gα̃lx

∫ 1

0

[
∂ρg(m̃, ñ)

∂m
m+

∂ρg(m̃, ñ)

∂n
n]+

α̃lf
′(m̃)

∫ x

0

m− α̃lf
′(m̃)x

∫ 1

0

m.

(4.62)

Differentiating (4.61) and (4.62) with respect to x, respectively, we have

µg[ug]x =

∫ x

0

G1(m,n, m̃, ñ)mx −
∫ 1

0

∫ y

0

G1(m,n, m̃, ñ)mx+

∫ x

0

G2(m,n, m̃, ñ)nx −
∫ 1

0

∫ y

0

G2(m,n, m̃, ñ)nx+

a2gα̃g[
∂ρg(m̃, ñ)

∂m
m̄+

∂ρg(m̃, ñ)

∂n
n̄]

(4.63)

and

µl[ul]x =

∫ x

0

G3(m,n, m̃, ñ)mx −
∫ 1

0

∫ y

0

G3(m,n, m̃, ñ)mx+

∫ x

0

G4(m,n, m̃, ñ)nx −
∫ 1

0

∫ y

0

G4(m,n, m̃, ñ)nx+

a2gα̃l[
∂ρg(m̃, ñ)

∂m
m̄+

∂ρg(m̃, ñ)

∂n
n̄] + α̃lf

′(m̃)m̄.

(4.64)

It is easy to verify that

|Gi(m,n, m̃, ñ)| ≤ C(|m− m̃|+ |n− ñ|) = C(|m̄|+ |n̄|) (4.65)



14 EVJE AND WEN

for i = 1, 2, 3, 4, under the assumption (4.58). Then (4.63) and (4.64) combined with (4.65) deduce
(4.60)1 and (4.60)2. From (3.56)3 and (3.56)4, we get (4.60)3 and (4.60)4. �

Lemma 4.3. Under the assumptions of Proposition 4.1, it holds that
∫

I

(m2
x + n2

x) +

∫ t

0

∫

I

(m2
x + n2

x) ≤ ε1 (4.66)

for a.e. t ∈ [0, T ], provided that

∫

I

(m2
0x + n2

0x) ≤ ε0, where ε0 and ε1 (ε0 < ε1) are independent

of t and T .

Proof. Note that m̄x = mx. We differentiate (3.57)2 with respect to x and get

mxt + m̃(ul)xx = −mxxul − 2mx(ul)x − m̄(ul)xx. (4.67)

Multiplying (4.67) by
∂ρg(m̃,ñ)

∂m
µl

m̃α̃l
mx, and integrating by parts over I, we have

d

dt

∫

I

∂ρg(m̃, ñ)

∂m

µl

2m̃α̃l
m2

x +

∫

I

∂ρg(m̃, ñ)

∂m

µl

α̃l
mx(ul)xx

= −3

∫

I

∂ρg(m̃, ñ)

∂m

µl

2m̃α̃l
m2

x(ul)x −
∫

I

∂ρg(m̃, ñ)

∂m

µl

m̃α̃l
m̄mx(ul)xx.

(4.68)

Similarly, we have

d

dt

∫

I

∂ρg(m̃, ñ)

∂n

µg

2ñα̃g
n2
x +

∫

I

∂ρg(m̃, ñ)

∂n

µg

α̃g
nx(ug)xx

= −3

∫

I

∂ρg(m̃, ñ)

∂n

µg

2ñα̃g
n2
x(ug)x −

∫

I

∂ρg(m̃, ñ)

∂n

µg

ñα̃g
n̄nx(ug)xx.

(4.69)

On the other hand, we multiply (3.57)3 and (3.57)4 by
∂ρg(m̃,ñ)

∂n
µg

α̃g
nx and

∂ρg(m̃,ñ)
∂m

µl

α̃l
mx respec-

tively, and have

∂ρg(m̃, ñ)

∂n

µg

α̃g
[ug]xxnx

=
∂ρg(m̃, ñ)

∂n

1

α̃g
G1(m,n, m̃, ñ)mxnx +

∂ρg(m̃, ñ)

∂n

1

α̃g
G2(m,n, m̃, ñ)n2

x

+ a2g[
∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂n
nx]

∂ρg(m̃, ñ)

∂n
nx

(4.70)

and

∂ρg(m̃, ñ)

∂m

µl

α̃l
[ul]xxmx

=
∂ρg(m̃, ñ)

∂m

1

α̃l
G3(m,n, m̃, ñ)m2

x +
∂ρg(m̃, ñ)

∂m

1

α̃l
G4(m,n, m̃, ñ)nxmx

+ a2g[
∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂n
nx]

∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂m
f ′(m̃)m2

x.

(4.71)

(4.70) and (4.71) implies that

a2g[
∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂n
nx]

∂ρg(m̃, ñ)

∂n
nx

=
∂ρg(m̃, ñ)

∂n

µg

α̃g
[ug]xxnx − ∂ρg(m̃, ñ)

∂n

1

α̃g
G1(m,n, m̃, ñ)mxnx−

∂ρg(m̃, ñ)

∂n

1

α̃g
G2(m,n, m̃, ñ)n2

x

≤∂ρg(m̃, ñ)

∂n

µg

α̃g
[ug]xxnx + C(m2

x + n2
x)(|m̄|+ |n̄|)

(4.72)
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and

a2g[
∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂n
nx]

∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂m
f ′(m̃)m2

x

=
∂ρg(m̃, ñ)

∂m

µl

α̃l
[ul]xxmx − ∂ρg(m̃, ñ)

∂m

1

α̃l
G3(m,n, m̃, ñ)m2

x−

∂ρg(m̃, ñ)

∂m

1

α̃l
G4(m,n, m̃, ñ)nxmx

≤∂ρg(m̃, ñ)

∂m

µl

α̃l
[ul]xxmx + C(m2

x + n2
x)(|m̄|+ |n̄|),

(4.73)

where we have used Cauchy inequality and (4.65). Summing (4.72) and (4.73) on both sides, we
have

a2g[
∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂n
nx]

2 +
∂ρg(m̃, ñ)

∂m
f ′(m̃)m2

x

≤∂ρg(m̃, ñ)

∂n

µg

α̃g
[ug]xxnx +

∂ρg(m̃, ñ)

∂m

µl

α̃l
[ul]xxmx + C(m2

x + n2
x)(|m̄|+ |n̄|).

(4.74)

Summing (4.68) and (4.69) results in

d

dt

∫

I

[

∂ρg(m̃, ñ)

∂m

µl

2m̃α̃l
m2

x +
∂ρg(m̃, ñ)

∂n

µg

2ñα̃g
n2
x

]

+

∫

I

∂ρg(m̃, ñ)

∂m

µl

α̃l
mx(ul)xx+

∫

I

∂ρg(m̃, ñ)

∂n

µg

α̃g
nx(ug)xx

=− 3

∫

I

[

∂ρg(m̃, ñ)

∂m

µl

2m̃α̃l
m2

x(ul)x +
∂ρg(m̃, ñ)

∂n

µg

2ñα̃g
n2
x(ug)x

]

−
∫

I

[

∂ρg(m̃, ñ)

∂m

µl

m̃α̃l
m̄mx(ul)xx +

∂ρg(m̃, ñ)

∂n

µg

ñα̃g
n̄nx(ug)xx

]

.

(4.75)

Substituting (4.60) to (4.75), we have

d

dt

∫

I

[

∂ρg(m̃, ñ)

∂m

µl

2m̃α̃l
m2

x +
∂ρg(m̃, ñ)

∂n

µg

2ñα̃g
n2
x

]

+

∫

I

∂ρg(m̃, ñ)

∂m

µl

α̃l
mx(ul)xx+

∫

I

∂ρg(m̃, ñ)

∂n

µg

α̃g
nx(ug)xx

≤Cµl‖(ul)x‖L∞

∫

I

m2
x + Cµg‖(ug)x‖L∞

∫

I

n2
x+

Cµl‖m̄‖L∞

∫

I

(

m2
x + (ul)

2
xx

)

+ Cµg‖n̄‖L∞

∫

I

(

n2
x + (ug)

2
xx

)

≤C(‖m̄‖L∞ + ‖n̄‖L∞)(‖mx‖L1 + ‖nx‖L1 + 1)

∫

I

(

m2
x + n2

x

)

.

(4.76)

Integrating (4.74) with respect to x over I, and adding the result to (4.76), we get

d

dt

∫

I

[

∂ρg(m̃, ñ)

∂m

µl

2m̃α̃l
m2

x +
∂ρg(m̃, ñ)

∂n

µg

2ñα̃g
n2
x

]

+ a2g

∫

I

[
∂ρg(m̃, ñ)

∂m
mx +

∂ρg(m̃, ñ)

∂n
nx]

2

+
∂ρg(m̃, ñ)

∂m
f ′(m̃)

∫

I

m2
x ≤ C(‖m̄‖L∞ + ‖n̄‖L∞)(‖mx‖L1 + ‖nx‖L1 + 1)

∫

I

(

m2
x + n2

x

)

.

Then there exist positive constants Āi for i = 0, 1, 2, 3, 4, 5, 6 such that

d

dt

∫

I

(Ā0m
2
x + Ā1n

2
x) + Ā2

∫

I

(Ā3mx + Ā4nx)
2 + Ā5

∫

I

m2
x

≤ Ā6(‖m̄‖L∞ + ‖n̄‖L∞)(‖mx‖L1 + ‖nx‖L1 + 1)

∫

I

(

Ā0m
2
x + Ā1n

2
x

)

.

(4.77)
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Note that here we make use of the assumption (1.10) which guarantees that Ā5 > 0. See also
Remark 4.4. Then, in view of the basic inequality a2 + b2 ≤ 2(a+ b)2 +3b2 there exists a positive
constant Ā7 such that

d

dt

∫

I

(Ā0m
2
x + Ā1n

2
x) + Ā7

∫

I

(Ā0m
2
x + Ā1n

2
x)

≤ Ā6(‖m̄‖L∞ + ‖n̄‖L∞)(‖mx‖L1 + ‖nx‖L1 + 1)

∫

I

(

Ā0m
2
x + Ā1n

2
x

)

.

(4.78)

By the Poincaré inequality, we have

‖m̄‖L∞ ≤ C‖mx‖L1 (4.79)

and

‖n̄‖L∞ ≤ C‖nx‖L1 . (4.80)

(4.78) combined with (4.79) and (4.80) turns out that there exists a positive constant A8 such
that

d

dt

∫

I

(Ā0m
2
x + Ā1n

2
x) + Ā7

∫

I

(Ā0m
2
x + Ā1n

2
x)

≤ Ā8(‖mx‖L1 + ‖nx‖L1)(‖mx‖L1 + ‖nx‖L1 + 1)

∫

I

(

Ā0m
2
x + Ā1n

2
x

)

≤ Ā8

[

∫

I

(

Ā0m
2
x + Ā1n

2
x

)

]1/2([
∫

I

(

Ā0m
2
x + Ā1n

2
x

)

]1/2

+ 1
)

∫

I

(

Ā0m
2
x + Ā1n

2
x

)

,

(4.81)

where Ā8 is redefined in the transition from the second to the third line. (4.81) corresponds to an
ODI of the form

d

dt
g + g ≤ √

g(
√
g + 1)g, t > 0, g ∼

∫

I

(Ā0m
2
x + Ā1n

2
x).

Together with standard continuity arguments this ODI implies that there exist positive constants

ε0 and ε1 (ε0 < ε1) depending only on Ā0, Ā1, Ā7 and Ā8 such that if

∫

I

(m2
0x + n2

0x) ≤ ε0, then
∫

I

(m2
x + n2

x) ≤ ε1 and

d

dt

∫

I

(Ā0m
2
x + Ā1n

2
x) +

Ā7

2

∫

I

(Ā0m
2
x + Ā1n

2
x) ≤ 0 (4.82)

for a.e. t ∈ [0, T ].
�

Remark 4.4. For an equal-pressure two-fluid model Pl = Pg and f(m) = 0. Consequently, the
”Ā5 term” in (4.77) disappears and it seems that we cannot obtain the crucial ODI (4.78) that
enforces stability.

Lemma 4.5. Under the assumptions of Proposition 4.1, it holds that

N̄1 ≤ n ≤ N̄2 and m ≤ M̄1 (4.83)

for all (x, t) ∈ I × [0, T ].

Proof. (4.79) and (4.80) give

m ≤ m̃+ C‖mx‖L1 (4.84)

and

ñ− C‖nx‖L1 ≤ n ≤ ñ+ C‖nx‖L1 . (4.85)

Since we have M̄1 > m̃ and N̄1 < ñ < N̄2, and (4.82) implies that ε1 can be taken sufficiently
small if ε0 is small, thus we let ε0 small enough, such that (4.83) can be concluded by (4.84) and
(4.85). �
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By this, the proof of Proposition 4.1 is complete. By Proposition 4.1 and the standard continuity
arguments, we get (4.58) for all (x, t) ∈ I × [0, T ∗) as well as the conclusions in Lemmas 4.2 and
(4.3) for a.e. (x, t) ∈ I × [0, T ∗). These imply that T ∗ = ∞. Thus, we finish the proof of global
existence. The uniqueness can be done by using arguments similar to those used in Step 4 of
Section 2.

Now we are in a position to prove the time-decay rate (1.13). More precisely, we have

Lemma 4.6. Under the conditions of Theorem 1.1, for a.e. t ∈ [0,∞), it holds that
∫

I

(m2
x + n2

x) ≤ C exp{−Ct}, (4.86)

where C depends on Ā0, Ā1 and Ā7 but is independent of t and T .

Proof. (4.86) can be obtained easily by using (4.82) since the ODI dg
dt + λg ≤ 0 implies that

(eλtg)′ ≤ 0. �

Lemma 4.7. Under the conditions of Theorem 1.1, for a.e. t ∈ [0,∞), it holds that
∫

I

(m̄2 + n̄2) ≤ C exp{−Ct}, (4.87)

where C depends on Ā0, Ā1 and Ā7 but is independent of t and T .

Proof. Using Poincaré inequality, we have
∫

I

(m̄2 + n̄2) ≤
∫

I

(m2
x + n2

x). (4.88)

(4.88) and (4.86) give us the (4.87). �

Lemma 4.8. Under the conditions of Theorem 1.1, for a.e. t ∈ [0,∞), it holds that

‖(ul, ug)‖2H2 ≤ C exp{−Ct} (4.89)

where C depends on Ā0, Ā1 and Ā7 but is independent of t and T .

Proof. (4.89) can be obtained by using (4.60)3, (4.60)4, and (4.86). �
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