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Abstract. The objective of this work is to explore a compressible gas-liquid model designed for
modeling of well flow processes. We build into the model well-reservoir interaction by allowing
flow of gas between well and formation (surrounding reservoir). Inflow of gas and subsequent
expansion of gas as it ascends towards the top of the well (a so-called gas kick) represents a major
concern for various well operations in the context of petroleum engineering. We obtain a global
existence result under suitable assumptions on the regularity of initial data and the rate function
that controls the flow of gas between well and formation. Uniqueness is also obtained by imposing
more regularity on the initial data. The key estimates are to obtain appropriate lower and upper
bounds on the gas and liquid masses. For that purpose we introduce a transformed version of
the original model that is highly convenient for analysis of the original model. In particular, in
the analysis of the transformed model additional terms, representing well-formation interaction,
can be treated by natural extensions of arguments that previously have been employed for the
single-phase Navier-Stokes model. The analysis ensures that transition to single-phase regions
do not appear when the initial state is a true gas-liquid mixture.
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1. Introduction

Many well operations in the context of petroleum engineering involve gas-liquid flow in a well-
bore where there is some interaction with the surrounding reservoir. For an example of such a
model in the context of single-phase flow we refer to [7, 8] and references therein. In this paper we
consider a two-phase gas-liquid model with inclusion of well-reservoir interaction. For instance,
gas-kick refers to a situation where gas flows into the well from the formation at some regions along
the wellbore. As this gas ascends in the well it will typically experience a lower pressure. This
leads to decompression of the gas, which in turn, potentially can provoke blow-out like scenarios.
In particular, equipment can be placed along the wellbore that allow for some kind of control on
the flow between well and formation. In this work we focus on a gas-liquid model where gas is
allowed to flow between well and formation governed by a given flow rate function A(x, t).

The dynamics of the two-phase well flow is supposed to be dictated by a compressible gas-liquid
model of the drift-flux type. More precisely, it takes the following form

∂t[αgρg] + ∂x[αgρgug] = [αgρg]A(x, t)

∂t[αlρl] + ∂x[αlρlul] = 0

∂t[αlρlul + αgρgug] + ∂x[αgρgu
2
g + αlρlu

2
l + P ] = −q + ∂x[ε∂xumix], umix = αgug + αlul,

(1)

where ε ≥ 0. This formulation allows us to study transient flows in a well together with a
possible flow of gas between well and surrounding reservoir represented by the rate term A(x, t).
The model is supposed under isothermal conditions. The unknowns are ρl, ρg the liquid and gas
densities, αl, αg volume fractions of liquid and gas satisfying αg + αl = 1, ul, ug velocities of
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liquid and gas, P common pressure for liquid and gas, and q representing external forces like
gravity and friction. Since the momentum is given only for the mixture, we need an additional
closure law, a so-called hydrodynamical closure law, which connects the two phase fluid velocities.
More generally, this law should be able to take into account the different flow regimes. For more
general information concerning two-phase flow dynamics we refer to [5, 4, 16], whereas we refer to
[6, 13] and references therein for more information concerning numerical methods and some basic
mathematical properties of the model (1).

In this work we consider the special case where a no-slip condition is assumed, i.e.,

ug = ul = u. (2)

In previous works [10, 11, 24, 25] a simplified version of the mixture momentum equation of (1)
has been used given by

∂t[αlρlul] + ∂x[αlρlu
2
l + p] = −q + ∂x[ε∂xumix], umix = αgug + αlul, (3)

where certain gas related terms have been ignored. In the present work we deal with the full mo-
mentum equation of (1), however, still under the assumption of equal fluid velocity (2). Assuming
a polytropic gas law relation p = Cργ

g with γ > 1 and incompressible liquid ρl = Const we get a
pressure law of the form

P (n,m) = C
( n

ρl −m

)γ

, (4)

where we use the notation n = αgρg and m = αlρl. In particular, we see that pressure becomes
singular at transition to pure liquid phase, i.e., αl = 1 and αg = 0, which yields m = ρl and n = 0.
Another possibility is that the gas density ρg vanishes which implies vacuum, i.e., p = 0. In order
to treat this difficulty we shall consider (1) in a free boundary problem setting where the masses
m and n initially occupy only a finite interval [a, b] ⊂ R. That is,

n(x, 0) = n0(x) > 0, m(x, 0) = m0(x) > 0, u(x, 0) = u0(x), x ∈ [a, b],

and n0 = m0 = 0 outside [a, b]. The viscosity coefficient ε is assumed to be a functional of the
masses m and n, i.e. ε = ε(n,m). More precisely, we assume that

ε(n, m) = D
(n + m)β

(ρl −m)β+1
, β ∈ (0, 1/3), (5)

for a constant D, which is a natural generalization of the viscosity coefficient that was used in
[10, 24] to the case where we consider the full momentum equation. We refer to [12] for more
information concerning the choice of the viscosity coefficient.

Introducing the total mass ρ = n + m and rewriting the model (1) in terms of Lagrangian
variables, the free boundaries are converted into fixed and we get a model of the form

∂tn + (nρ)∂xu = nA

∂tρ + ρ2∂xu = nA

∂tu + ∂xP (n, ρ) = −u
n

ρ
A + ∂x(ε(n, ρ)ρ∂xu), x ∈ (0, 1),

(6)

with pressure law

P (n, ρ) =
( n

ρl − [ρ− n]

)γ

, (7)

and viscosity coefficient

ε(n, ρ) =
ρβ

(ρl − [ρ− n])β+1
, β ∈ (0, 1/3), (8)

where we have set the constant C, D to be one for simplicity, whereas boundary conditions are

P (n, ρ) = ε(n, ρ)ρux, at x = 0, 1, t ≥ 0, (9)

and initial conditions are

n(x, 0) = n0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (10)
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The main novelty of this work compared to the previous recent works [10, 11, 24, 25] on the model
(1) is as follows:

• We include the full momentum equation of (1) in contrast to the simplified one given by
(2);

• We include well-reservoir interaction in the sense that gas can flow between the well and
reservoir. As a consequence, new terms appear in the continuity and momentum equations,
see (6).

We obtain an existence result (Theorem 2.1) for the model (6)–(10) for a class of weak solutions
under suitable regularity conditions on the initial data n0, m0, and u0 and the well-formation rate
function A(x, t). The key point leading to this result is the possibility to obtain sufficient pointwise
control on the gas mass n and liquid mass m, upper as well as lower limits. More precisely, by
assuming initially that the gas and liquid mass n and m do not disappear or blow up on [0, 1],
that is,

C−1 ≤ n(x, 0) ≤ C, 0 < µ ≤ m(x, 0) ≤ ρl − µ < ρl,

for a suitable constant C > 0 and µ > 0, then the same will be true for the masses n and m for
all t ∈ [0, T ] for any specified time T > 0. This nice feature allows us to obtain various estimates
which ensure convergence to a class of weak solutions. By imposing more regularity on the fluid
velocity we also derive a uniqueness result (Theorem 5.1) in a corresponding smaller class of weak
solutions. A main tool in this analysis is the introduction of a suitable variable transformation
allowing for application of ideas and techniques similar to those used in [21, 18, 19, 23, 22, 17]
in previous studies of the single-phase Navier-Stokes equations. In this sense the approach of
this work follows along the same line as [10, 11, 24]. However, in the current work the variable
transformation must also account for the fact that the full momentum equation is used as well as
ensure that the new terms representing well-formation interaction can be properly handled.

We end this section by a brief review of more recent works on models similar to (1). In [12] we
explore existence of global weak solutions for a version of (1) where a physical relevant friction
term has been added together with a general pressure law. Furthermore, the model has also
been studied in Eulerian coordinates with a simplified momentum equation similar to (3) and
constant viscosity coefficient [9]. Existence of global weak solutions was obtained under suitable
assumptions on initial data. For a similar result where the model is studied in a 2D setting we
refer to [26]. The drift-flux model has also been studied in the context of flow in networks [3].
Finally, we also would like to mention some works on a related multicomponent gas model without
viscosity term where discrete algorithms are used to rigorously demonstrate convergence towards
a weak solution [14, 15]. A similar type of model with focus on phase transition is studied in [1, 2].
In particular, global existence of weak solutions is shown as well as convergence towards a reduced
model.

The rest of this paper is organized as follows. In Section 2 we derive the Lagrangian form of
the model (1) and state precisely the main theorem and its assumptions. In Section 3 we describe
a priori estimates for an auxiliary model obtained from (6) by using an appropriate variable
transformation. In Section 4 we consider approximate solutions to (6) obtained by regularizing
initial data. By means of the estimates of Section 3, we get a number of estimates for the
approximate solutions of Section 4 which imply compactness. Convergence to a weak solution
then follows by standard arguments. Finally, in Section 5 we present a uniqueness result for an
appropriate (smaller) class of weak solutions.

2. A global existence result

We focus on the case where the liquid is assumed to be incompressible which implies that we
use the pressure law (4). We refer to the works [10, 11] for more details. Moreover, we neglect
external force terms (friction and gravity). We then rewrite the model slightly by adding the two
continuity equations and introducing the total mass ρ given by

ρ = n + m. (11)
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Hence, we consider the compressible gas-incompressible liquid two-phase model written in the
following form:

∂tn + ∂x[nu] = nA

∂tρ + ∂x[ρu] = nA

∂t[ρu] + ∂x[ρu2] + ∂xP (n, ρ) = ∂x[ε(n, ρ)∂xu].

(12)

with A = A(x, t). Note that this system also takes the form

∂tn + ∂x[nu] = nA

∂tρ + ∂x[ρu] = nA,

u(∂tρ + ∂x[ρu]) + ρ(∂tu + u∂xu) + ∂xP (n, ρ) = ∂x[ε(n, ρ)∂xu],
(13)

which corresponds to

(∂tn + u∂xn) + n∂xu = nA

(∂tρ + u∂xρ) + ρ∂xu = nA,

ρ(∂tu + u∂xu) + ∂xP (n, ρ) = −unA + ∂x[ε(n, ρ)∂xu].
(14)

Here

P (n, ρ) =
( n

ρl −m

)γ

=
( n

ρl − [ρ− n]

)γ

, γ > 1, (15)

ε(n, ρ) =
(n + m)β

(ρl −m)β+1
=

ρβ

(ρl − [ρ− n])β+1
, β ∈ (0, 1/3). (16)

2.1. Main idea. The idea of this paper is to study the model (12)–(16) in a setting where sufficient
pointwise control on the masses ρ and n can be ensured. Motivated by previous studies of the
single-phase Navier-Stokes model [21, 18, 19, 23, 22, 17], we propose to study (12) in a free-
boundary setting where the total mass ρ and gas mass n are of compact support initially and
connect to the vacuum regions (where n = ρ = 0) discontinuously. More precisely, we shall study
the Cauchy problem (12) with initial data

(n, ρ, ρu)(x, 0) =

{
(n0, ρ0, ρ0u0) x ∈ [a, b],
(0, 0, 0) otherwise,

where minx∈[a,b] n0 > 0, minx∈[a,b] ρ0 > 0, and n0(x), ρ0(x) are in H1. In other words, we study the
two-phase model in a setting where an initial true two-phase mixture region (a, b) is surrounded
by vacuums states n = ρ = 0 on both sides. Letting a(t) and b(t) denote the particle paths
initiating from (a, 0) and (b, 0), respectively, in the x-t coordinate system, these paths represent
free boundaries, i.e., the interface of the gas-liquid mixture and the vacuum. These are determined
by the equations

d

dt
a(t) = u(a(t), t),

d

dt
b(t) = u(b(t), t),

(−P (n, ρ) + ε(n, ρ)ux) (a(t)+, t) = 0, (−P (n, ρ) + ε(n, ρ)ux) (b(t)−, t) = 0.
(17)

We introduce a new set of variables (ξ, τ) by using the coordinate transformation

ξ =
∫ x

a(t)

ρ(y, t) dy, τ = t. (18)

Thus, ξ represents a convenient rescaling of x. In particular, the free boundaries x = a(t) and
x = b(t), in terms of the new variables ξ and τ , take the form

ã(τ) = 0, b̃(τ) =
∫ b(t)

a(t)

ρ(y, t) dy = const (by assumption), (19)

where
∫ b

a
ρ0(y) dy is the total liquid mass initially, which we normalize to 1. In other words, the

interval [a, b] in the x-t system appears as the interval [0, 1] in the ξ-τ system.
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Remark 2.1. Note that we implicitly in (19) use the assumption
∫ b(t)

a(t)

[nA](y, t) dy = 0.

This puts a constrain on the well-formation interaction. In particular, it implies that if there is
inflow of gas in one region along the well (A > 0), then there must be outflow in another region
(A > 0) such that the total mass ρ is conserved.

Next, we rewrite the model itself (12) in the new variables (ξ, τ). First, in view of the particle
paths Xτ (x) given by

dXτ (x)
dτ

= u(Xτ (x), τ), X0(x) = x,

the system (14) now takes the form

dn

dτ
+ nux = nA(x, τ)

dρ

dτ
+ ρux = nA(x, τ)

ρ
du

dτ
+ P (n, ρ)x = −unA(x, τ) + (ε(n, ρ)ux)x.

Applying (18) to shift from (x, t) to (ξ, τ) we get

nτ + (nρ)uξ = nA(x(ξ, τ), τ)

ρτ + (ρ2)uξ = nA(x(ξ, τ), τ)

uτ + P (n, ρ)ξ = −u
n

ρ
A(x(ξ, τ), τ) + (ε(n, ρ)ρuξ)ξ, ξ ∈ (0, 1), τ ≥ 0,

where x(ξ, τ) = a(τ)+
∫ ξ

0
ρ−1(y, τ) dy for ξ ∈ [0, 1] and with boundary conditions, in view of (17),

given by
P (n, ρ) = ε(n, ρ)ρuξ, at ξ = 0, 1, τ ≥ 0.

In addition, we have the initial data

n(ξ, 0) = n0(ξ), ρ(ξ, 0) = ρ0(ξ), u(ξ, 0) = u0(ξ), ξ ∈ [0, 1].

In the following we replace the coordinates (ξ, τ) by (x, t) such that the model now takes the form

∂tn + (nρ)∂xu = nA(x, t)

∂tρ + ρ2∂xu = nA(x, t)

∂tu + ∂xP (n, ρ) = −u
n

ρ
A(x, t) + ∂x(E(n, ρ)∂xu), x ∈ (0, 1),

(20)

with
P (n, ρ) =

( n

ρl − [ρ− n]

)γ

, γ > 1, (21)

and

E(n, ρ) =
( ρ

ρl − [ρ− n]

)β+1

, 0 < β < 1/3. (22)

Moreover, boundary conditions are given by

P (n, ρ) = E(n, ρ)ux, at x = 0, 1, t ≥ 0, (23)

whereas initial data are

n(x, 0) = n0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (24)

We observe that the model problem (20)–(24) coincides with the model (6)–(10) stated in the
introduction part. We shall in the following assume that the external controlled flow rate function
A(x, t) satisfies some estimates, essentially, that it is bounded and its spatial derivative is in L2.
This is precisely stated below.
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2.2. Main result. Before we state the main result for the model (20)–(24), we describe the
notation we apply throughout the paper. W 1,2(I) = H1(I) represents the usual Sobolev space
defined over I = (0, 1) with norm ‖ ·‖W 1,2 . Moreover, Lp(K,B) with norm ‖ ·‖Lp(K,B) denotes the
space of all strongly measurable, pth-power integrable functions from K to B where K typically
is subset of R and B is a Banach space. In addition, let Cα[0, 1] for α ∈ (0, 1) denote the Banach
space of functions on [0, 1] which are uniformly Hölder continuous with exponent α. Similarly, let
Cα,α/2(DT ) represent the Banach space of functions on DT = [0, 1] × [0, T ] which are uniformly
Hölder continuous with exponent α in x and α/2 in t.

Theorem 2.1 (Main Result). Assume that γ > 1 and β ∈ (0, 1/3) respectively in (21) and (22),
and that the initial data (n0,m0, u0) satisfy

(i) inf [0,1] n0 > 0, sup[0,1] n0 < ∞, inf [0,1] m0 > 0, and sup[0,1] m0 < ρl;
(ii) n0,m0 ∈ W 1,2(I);
(iii) u0 ∈ L2q(I), for q ∈ N.

As a consequence, the function c0 = n0
n0+m0

satisfies that

inf
[0,1]

c0 > 0, sup
[0,1]

c0 < 1, c0 ∈ W 1,2(I). (25)

Moreover, the function Q0 = n0+m0
ρl−m0

satisfies that

inf
[0,1]

Q0 > 0, sup
[0,1]

Q0 < ∞, Q0 ∈ W 1,2(I). (26)

In addition, the well-formation flow rate function A(x, t) is assumed to satisfy for all times t ≥ 0
(iv) supx∈[0,1] |A(x, t)| ≤ M < ∞;
(v) A(·, t) ∈ W 1,2(I);
(vi) A(0, t) = 0.

Then the initial-boundary problem (20)–(24) possesses a global weak solution (n, ρ, u) in the sense
that for any T > 0, the following holds:

(A) We have the following estimates:

n, ρ ∈ L∞([0, T ],W 1,2(I)), nt, ρt ∈ L2([0, T ], L2(I)),

u ∈ L∞([0, T ], L2q(I)) ∩ L2([0, T ],H1(I)).

More precisely, we have ∀(x, t) ∈ [0, 1]× [0, T ] that

0 < inf
x∈[0,1]

c(x, t), sup
x∈[0,1]

c(x, t) < 1, c :=
n

ρ
,

0 < µ inf
x∈[0,1]

(c) ≤ n(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c),

0 < µ ≤ ρ ≤ ρl − µ

1− supx∈[0,1](c)
,

(27)

for a non-negative constant µ = µ(‖c0‖W 1,2(I), ‖Qβ
0‖W 1,2(I), ‖A‖W 1,2(I), ‖u0‖L2k(I),

inf [0,1] c0, sup[0,1] c0, inf [0,1] Q0, sup[0,1] Q0,M, T ) > 0.

(B) Moreover, the following equations hold,

nt + nρux = nA, ρt + ρ2ux = nA,

(n, ρ)(x, 0) = (n0(x), ρ0(x)), for a.e. x ∈ (0, 1) and any t ≥ 0,
∫ ∞

0

∫ 1

0

[
uφt +

(
P (n, ρ)− E(n, ρ)ux

)
φx − u

n

ρ
Aφ

]
dx dt +

∫ 1

0

u0(x)φ(x, 0) dx = 0

(28)

for any test function φ(x, t) ∈ C∞0 (D), with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.
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The proof of Theorem 2.1 is based on a priori estimates for the approximate solutions of (20)–
(24) and a corresponding limit procedure. In particular, it is possible to obtain pointwise upper
and lower limits for ρ that allows us to control the quantities

∫ 1

0
(ρx)2 dx and

∫ 1

0
(nx)2 dx, see

Corollary 3.3. A main idea in the analysis is to employ the quantity Q(n, ρ) = ρ/(ρl − [ρ − n]),
which connects pressure P (n, ρ) and viscosity coefficient E(n, ρ), and reformulate the model (20)
in terms of the variables (c,Q, u) where c = n/ρ. Together with higher order regularity of u and
(Qβ)x, and energy-conservation obtained by adopting techniques used in [21, 18, 19, 23, 22, 17]
for single-phase Navier-Stokes equations, pointwise upper and lower limits for Q(n, ρ) can be
derived. This, in turn, gives the required boundedness on ρ from below and above together with
the L2 estimate of nx and ρx. Armed with these estimates we can rely on standard compactness
arguments to prove Theorem 2.1. This is done in Section 4.

Special challenges we have to deal with in this work, compared to the previous two-phase works
[10, 11, 24, 25] where a similar approach was employed, are:

• The variable c = c(x, t) becomes time-dependent as a consequence of the well-formation
interaction. This makes some of the estimates more involved, e.g. manifested by the
appearance of Lemma 3.2, which does not appear in [10, 11, 24, 25].

• The result of Lemma 3.3 requires a certain regularity on the flow rate function A(x, t).
• The proof of Lemma 3.4 must be extended by new arguments (compared to e.g. [10]) in

order to treat new terms representing the well-formation effects.

3. Estimates

Below we derive a priori estimates for (n, ρ, u) which are assumed to be a smooth solution of
(20)–(24). We then construct the approximate solutions of (20) in Section 4 by mollifying the
initial data n0, ρ0, u0 and obtain global existence by taking the limit.

More precisely, similar to [17, 10] we first assume that (n, ρ, u) is a solution of (20)–(24) on
[0, T ] satisfying

n, nt, nx, ntx, ρ, ρx, ρt, ρtx, u, ux, ut, uxx ∈ Cα,α/2(DT ) for some α ∈ (0, 1),

n(x, t) > 0, ρ(x, t) > 0, [ρ− n](x, t) < ρl on DT = [0, 1]× [0, T ].
(29)

In the following we will frequently take advantage of the fact that the model (20) can be rewritten
in a form more amenable for deriving various useful estimates. We first describe this reformulation,
and then present a number of a priori estimates.

3.1. A reformulation of the model (20). We introduce the variable

c =
n

ρ
, (30)

and see that (20) corresponds to

ρ∂tc + c∂tρ + [cρ2]∂xu = [cρ]A

∂tρ + ρ2∂xu = [cρ]A

∂tu + ∂xP (c, ρ) = −ucA + ∂x(E(c, ρ)∂xu),

that is,

ρ∂tc + c[cρ]A = [cρ]A

∂tρ + ρ2∂xu = [cρ]A

∂tu + ∂xP (c, ρ) = −ucA + ∂x(E(c, ρ)∂xu),

which, in turn can be reformulated as

∂tc = c(1− c)A = ckA, k = k(x, t) := 1− c(x, t),

∂tρ + ρ2∂xu = cρA

∂tu + ∂xP (c, ρ) = −ucA + ∂x(E(c, ρ)∂xu),

(31)
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with

P (c, ρ) = cγ
( ρ

ρl − k(x, t)ρ

)γ

, k(x, t) = 1− c(x, t) γ > 1, (32)

and

E(c, ρ) =
( ρ

ρl − k(x, t)ρ

)β+1

, 0 < β < 1/3. (33)

Moreover, boundary conditions are given by

P (c, ρ) = E(c, ρ)ux, at x = 0, 1, t ≥ 0, (34)

whereas initial data are

c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (35)

Corollary 3.1. Under the assumptions of Theorem 2.1, it follows that for a given time T > 0

0 < inf
x∈[0,1]

c(x, t), sup
x∈[0,1]

c(x, t) < 1. (36)

Proof. Note that from (31) we have

ct = c(1− c)A(x, t),

which corresponds to
1

c(1− c)
ct = A(x, t), c ∈ (0, 1),

i.e.
G(c)t = A(x, t), G(c) = log

( c

1− c

)
.

This implies that
c(x, t)

1− c(x, t)
=

c0(x)
1− c0(x)

exp
(∫ t

0

A(x, s) ds
)
.

Note also that the inverse of h(c) = c/(1− c) is h−1(d) = d/(1+d), such that h−1 : [0,∞) → [0, 1)
and is one-to-one. Consequently,

c(x, t) = h−1
( c0(x)

1− c0(x)
exp

(∫ t

0

A(x, s) ds
))

, (37)

and 0 < c(x, t) < 1 for c0(x) ∈ (0, 1). In particular, we see that if

0 < inf
[0,1]

c0(x), sup
[0,1]

c0(x) < 1, sup
[0,1]

|A(x, t)| ≤ M, (38)

which follows from the assumptions on n0, m0, and A given in Theorem 2.1, the conclusion (36)
holds. ¤

In order to obtain the a priori estimates it will be convenient to introduce a new reformulation
of the model (31)–(35). This reformulation allows us to deal with the potential singular behavior
associated with the pressure law (32) and viscosity coefficient (33). A similar approach was used
in [10, 11, 24]. However, compared to those works we now also have to take into account additional
terms due to the well-formation interaction and the fact that a full momentum equation is used
in the model. For that purpose, we introduce the variable

Q(ρ, k) =
ρ

ρl − k(x, t)ρ
, (39)

and observe that

ρ =
ρlQ

1 + kQ
,

1
ρ

=
1

ρlQ
+

k

ρl
. (40)
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Consequently, we get

Q(ρ, k)t = Qρρt + Qkkt

=
( 1

ρl − kρ
+

ρk

(ρl − kρ)2
)
ρt +

ρ2

(ρl − kρ)2
kt

=
ρl

(ρl − kρ)2
ρt +

ρ2

(ρl − kρ)2
kt

=
ρl

(ρl − kρ)2
[cρA− ρ2ux] +

ρ2

(ρl − kρ)2
kt (using second equation of (31))

=
ρlcρA

(ρl − kρ)2
− ρlρ

2

(ρl − kρ)2
ux + Q2kt

=
ρlcρ

2A

ρ(ρl − kρ)2
− ρlQ

2ux −Q2ct

= ρlcA
( 1

ρlQ
+

k

ρl

)
Q2 − ρlQ

2ux −Q2ckA (using (40) and first equation of (31))

= cA
(
Q + kQ2

)
− ρlQ

2ux −Q2ckA

= cAQ + cAkQ2 − ρlQ
2ux −Q2ckA

= cAQ− ρlQ
2ux.

Thus, we may rewrite the model (31) in the following form

∂tc = kcA

∂tQ + ρlQ
2ux = cAQ

∂tu + ∂xP (c,Q) = −ucA + ∂x(E(Q)∂xu),
(41)

with
P (c,Q) = cγQ(ρ, k)γ , γ > 1, (42)

and
E(Q) = Q(ρ, k)β+1, 0 < β < 1/3. (43)

This model is then subject to the boundary conditions

P (c, Q) = E(Q)ux, at x = 0, 1, t ≥ 0. (44)

In addition, we have the initial data

c(x, 0) = c0(x), Q(x, 0) = Q0(x), u(x, 0) = u0(x), x = [0, 1]. (45)

Note that there is a fine tuned balance which leads to the transformed model (41). In particular,
the cancelation of the term ckQ2A appearing in the equation for Q and shown in the above
calculation, seems to be crucial for the energy estimate. Note also the new term in the momentum
equation accounting for the change in fluid velocity due to inflow/outflow.

3.2. A priori estimates. Now we derive a priori estimates for (c,Q, u) by making use of the
reformulated model (41)–(45).

Lemma 3.1 (Energy estimate). We have the basic energy estimate
∫ 1

0

(1
2
u2 +

cγQ(ρ, k)γ−1

ρl(γ − 1)

)
(x, t) dx +

∫ t

0

∫ 1

0

Q(ρ, k)β+1(ux)2 dx ds ≤ C1 (46)

where C1 = C1(sup[0,1] Q0, ‖u0‖L2(I), ‖c0‖Lγ(I),M). Moreover,

Q(ρ, k)(x, t) ≤ C2, ∀(x, t) ∈ [0, 1]× [0, T ], (47)

where C2 = C2(sup[0,1] Q0, ‖u0‖L2(I), ‖c0‖Lγ(I),M, T ). Moreover, for any positive integer q,
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∫ 1

0

u2q(x, t) dx + q(2q − 1)
∫ t

0

∫ 1

0

u2q−2Q(ρ, k)1+β(ux)2 dx dt ≤ C3, (48)

where C3 = C3(‖u0‖L2q(I), T, q, C2,M).

Proof. We consider the proof in three steps.

Estimate (46): We multiply the third equation of (41) by u and integrate over [0, 1] in space.
We apply the boundary condition (44) and the equation

cγ

ρl(γ − 1)
(Qγ−1)t + cγQγux =

1
ρl

cγ+1Qγ−1A, (49)

obtained from the second equation of (41) by multiplying with cγQγ−2. This equation also corre-
sponds to

1
ρl(γ − 1)

(cγQγ−1)t − Qγ−1

ρl(γ − 1)
(cγ)t + cγQγux =

1
ρl

cγ+1Qγ−1A, (50)

which in turn can be rewritten as
1

ρl(γ − 1)
(cγQγ−1)t − γ

ρl(γ − 1)
Qγ−1cγkA + P (c, Q)ux =

1
ρl

cγ+1Qγ−1A, (51)

where we have used the first equation of (41). Then, we get

d

dt

∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dx−

∫ 1

0

γcγQγ−1

ρl(γ − 1)
[kA] dx +

∫ 1

0

u2[cA] dx

+
∫ 1

0

E(Q)(ux)2 dx =
1
ρl

∫ 1

0

cγ+1Qγ−1Adx =
1
ρl

∫ 1

0

cγQγ−1[cA] dx.

Using that |kA(x, t)|, |cA(x, t)| ≤ M , in view of the assumptions of Theorem 2.1 and the re-
sult of Corollary 3.1, application of Gronwall’s inequality, respectively, for the term

∫ 1

0
u2[cA] dx,∫ 1

0
cγQγ−1[cA] dx, and

∫ 1

0
cγQγ−1[kA] dx, gives (46).

Estimate (47): From the second equation of (41) we deduce the equation

1
ρl

(Qβ)t + βQβ+1ux =
β

ρl
cQβA. (52)

Integrating over [0, t], we get

Qβ(x, t) = Qβ(x, 0)− βρl

∫ t

0

Qβ+1ux ds + β

∫ t

0

cQβAds. (53)

Then, we integrate the third equation of (41) over [0, x] and get
∫ x

0

ut(y, t) dy + P (c,Q)− P (c(0, t), Q(0, t)) + (E(Q)ux)(0, t) +
∫ x

0

ucAdy = E(Q)ux = Qβ+1ux.

Using the boundary condition (44) and inserting the above relation into the right hand side of
(53), we get

Qβ(x, t)

= Qβ(x, 0)− βρl

∫ t

0

(∫ x

0

ut(y, t) dy + P (c,Q) +
∫ x

0

ucAdy
)

ds + β

∫ t

0

cQβAds

= Qβ(x, 0)− βρl

∫ x

0

(u(y, t)− u0(y)) dy − βρl

∫ t

0

P (c,Q) ds

− βρl

∫ t

0

∫ x

0

u[cA] dy ds + β

∫ t

0

Qβ [cA] ds.

(54)
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Consequently, since P (c,Q) ≥ 0 and |cA| ≤ M

Qβ(x, t) ≤ Qβ(x, 0) + βρl

∫ 1

0

|u(y, t)| dy + βρl

∫ 1

0

|u0(y)| dy

+ βρlM

∫ t

0

∫ x

0

|u| dy ds + βM

∫ t

0

Qβ(x, s) ds.

Applying Hölder’s inequality and (46) we can bound
∫ 1

0
|u| dy. Moreover, the term

∫ t

0
Qβ ds can

be handled by means of Gronwall’s inequality, and the upper bound (47) then follows.

Estimate (48): Multiplying the third equation of (41) by 2qu2q−1, integrating over [0, 1] × [0, t]
and integration by parts together with application of the boundary conditions (44), we get

∫ 1

0

u2q dx + 2q(2q − 1)
∫ t

0

∫ 1

0

Q(ρ, k)β+1(ux)2u2q−2 dx ds

=
∫ 1

0

u2q
0 dx + 2q(2q − 1)

∫ t

0

∫ 1

0

cγQ(ρ, k)γu2q−2ux dx ds− 2q

∫ t

0

∫ 1

0

[cA]u2q dx ds.

(55)

For the second term on the right hand side of (55) we apply Cauchy’s inequality with ε, ab ≤
(1/4ε)a2 + εb2, and get
∫ t

0

∫ 1

0

cγQ(ρ, k)γu2q−2ux dx ds

≤ 1
4ε

∫ t

0

∫ 1

0

c2γQ(ρ, k)2γ−β−1u2q−2 dx ds + ε

∫ t

0

∫ 1

0

Q(ρ, k)β+1u2q−2(ux)2 dx ds

≤ 1
4ε

sup
x∈[0,1]

(c2γ)
∫ t

0

∫ 1

0

Q(ρ, k)2γ−β−1u2q−2 dx ds + ε

∫ t

0

∫ 1

0

Q(ρ, k)β+1u2q−2(ux)2 dx ds.

The last term clearly can be absorbed in the second term of the left-hand side of (55) by the choice
ε = 1/2. Finally, let us see how we can bound the term

∫ t

0

∫ 1

0
u2q−2Q(ρ, k)2γ−1−β dx ds. In view

of Young’s inequality ab ≤ (1/p)ap + (1/r)br where 1/p + 1/r = 1, we get for the choice p = q and
r = q/(q − 1)

∫ t

0

∫ 1

0

u2q−2Q(ρ, k)2γ−1−β dx ds ≤ 1
q

∫ t

0

∫ 1

0

Q(ρ, k)(2γ−1−β)q dx ds +
q − 1

q

∫ t

0

∫ 1

0

u2q dx ds

≤ C
(2γ−1−β)q
2

q
t +

q − 1
q

∫ t

0

∫ 1

0

u2q dx ds,

by using (47). To sum up, we get
∫ 1

0

u2q dx + q(2q − 1)
∫ t

0

∫ 1

0

Q(ρ, k)β+1(ux)2u2q−2 dx ds

≤
∫ 1

0

u2q
0 dx + 2q(2q − 1)

1
4ε

sup
x∈[0,1]

(c2γ)
[C2γ−1−β

2

q
t +

q − 1
q

∫ t

0

∫ 1

0

u2q dx ds
]

+ 2qM

∫ t

0

∫ 1

0

u2q dx ds

=
∫ 1

0

u2q
0 dx + (2q − 1) sup

x∈[0,1]

(c2γ)
[
C2γ−1−β

2 t + (q − 1)
∫ t

0

∫ 1

0

u2q dx ds
]

+ 2qM

∫ t

0

∫ 1

0

u2q dx ds.

(56)

In view of Corollary 3.1, application of Gronwall’s inequality then allows us to handle the term∫ t

0

∫ 1

0
u2q dx ds appearing twice on the right hand side of (56). Hence, the estimate (48) follows. ¤

The next lemma describes under which conditions c(x, t) is in W 1,2(I).

Lemma 3.2 (Additional regularity). We have the estimate
∫ 1

0

(∂xc)2 dx ≤ C4, (57)
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for a constant C4 = C4(M, ‖c0‖W 1,2(I), ‖A‖W 1,2(I), T ).

Proof. We set w = cx and derive from the first equation of (41)

wt = w(1− c)A− cwA + ckAx = w(1− 2c)A + ckAx.

Hence, multiplying by w and integrating over [0, 1] we get
∫ 1

0

(
1
2
w2)t dx =

∫ 1

0

(1− 2c)Aw2 dx +
∫ 1

0

ckAxw dx. (58)

Clearly, in view of the assumptions on the flow rate A and the bound on c from Corollary 3.1, we
see that

1
2

d

dt

∫ 1

0

w2 dx =
∫ 1

0

(1− 2c)Aw2 dx +
∫ 1

0

ckAxw dx

≤ M

∫ 1

0

w2 dx +
1
2

∫ 1

0

A2
x dx +

1
2

∫ 1

0

[ck]2w2 dx

≤ (M + 1)
∫ 1

0

w2 dx + C,

where we have used Cauchy’s inequality. We conclude, by Gronwall’s inequality, that

‖cx‖2L2(I) ≤ C4,

where C4 = C4(M, ‖c0‖W 1,2(I), ‖A‖W 1,2(I), T ). ¤

The following lemma was also employed in previous works [10, 24]. However, the fact that c is
time dependent makes the result more involved, and we need the result of Lemma 3.2.

Lemma 3.3 (Additional regularity). We have the estimate
∫ 1

0

(∂xQβ(ρ, k))2 dx ≤ C5, (59)

for a constant C5 = C5(‖Qβ
0‖W 1,2(I), ‖c0‖W 1,2(I), ‖u0‖L2(I), C1, C2, C4,M, T ).

Proof. Using (52) in the third equation of (41) and integrating in time over [0, t] we arrive at

u(x, t)− u0(x) +
∫ t

0

∂xP (c,Q)(x, s) ds = −
∫ t

0

[cA]u ds +
∫ t

0

∂x(E(Q)∂xu) ds

= −
∫ t

0

[cA]u ds− 1
βρl

(∂xQβ(x, t)− ∂xQβ(x, 0)) +
1
ρl

∫ t

0

∂x([cA]Qβ) ds.

(60)

Multiplying (60) by βρl(∂xQβ) and integrating over [0, 1] in x, we get
∫ 1

0

(∂xQβ)2 dx =
∫ 1

0

(∂xQβ)∂xQβ
0 dx− βρl

∫ 1

0

(∂xQβ)
[
(u− u0) +

∫ t

0

∂xP (c,Q) ds
]
dx

+ βρl

∫ 1

0

(∂xQβ)
[
−

∫ t

0

[cA]u ds +
1
ρl

∫ t

0

∂x([cA]Qβ) ds
]
dx

≤
(∫ 1

0

(∂xQβ)2 dx
)1/2(

‖∂xQβ
0‖L2(I) + βρl‖u− u0‖L2(I) + βρl

∥∥∥
∫ t

0

∂xP ds
∥∥∥

L2(I)

+ βρl

∥∥∥
∫ t

0

[cA]u ds
∥∥∥

L2(I)
+ β

∥∥∥
∫ t

0

∂x([cA]Qβ) ds
∥∥∥

L2(I)

)

:= ab,

(61)
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where we have used Hölder’s inequality. Cauchy’s inequality ab ≤ a2/2 + b2/2 then gives
∫ 1

0

(∂xQβ)2 dx

≤ 1
2

∫ 1

0

(∂xQβ)2 dx +
1
2

(
‖∂xQβ

0‖L2(I) + βρl‖u− u0‖L2(I) + βρl

∥∥∥
∫ t

0

∂xP ds
∥∥∥

L2(I)

+ βρl

∥∥∥
∫ t

0

[cA]u ds
∥∥∥

L2(I)
+ β

∥∥∥
∫ t

0

∂x([cA]Qβ) ds
∥∥∥

L2(I)

)2

≤ 1
2

∫ 1

0

(∂xQβ)2 dx + C + βρlT

∫ t

0

∫ 1

0

(∂xP )2 dx ds

+ βT

∫ t

0

∫ 1

0

(∂x([cA]Qβ))2 dx ds + βρlT

∫ t

0

∫ 1

0

([cA]u)2 dx ds,

(62)

by using Hölder’s inequality and (48) with q = 1 and where C = C(‖Qβ
0‖W 1,2(I), ‖u0‖L2(I), C1).

Moreover,
∫ t

0

∫ 1

0

(∂xP )2 dx ds =
∫ t

0

∫ 1

0

(
Qγ(cγ)x + cγ(Qγ)x

)2

dx ds

≤ 2
(∫ t

0

∫ 1

0

Q2γ(cγ)2x dx ds +
∫ t

0

∫ 1

0

c2γ(Qγ)2x dx ds
)

≤ 2( sup
x∈[0,1]

Q)2γ

∫ t

0

∫ 1

0

(cγ)2x dx ds + 2( sup
x∈[0,1]

c)2γ

∫ t

0

∫ 1

0

(Qγ)2x dx ds

≤ 2C2γ
2

∫ t

0

∫ 1

0

(cγ)2x dx ds + 2
∫ t

0

∫ 1

0

(Qγ)2x dx ds,

(63)

in view of estimate (47) and Corollary 3.1. Moreover,

∫ t

0

∫ 1

0

(Qγ)2x dx ds =
(

γ

β

)2 ∫ t

0

∫ 1

0

Q2(γ−β)([Qβ ]x)2 dx ds

≤
(

γ

β

)2

C
2(γ−β)
2

∫ t

0

∫ 1

0

([Qβ ]x)2 dx ds

(64)

and
∫ t

0

∫ 1

0

(cγ)2x dx ds = γ2

∫ t

0

∫ 1

0

c2(γ−1)(cx)2 dx ds

≤ γ2( sup
x∈[0,1]

c)2(γ−1)

∫ t

0

∫ 1

0

(cx)2 dx ds ≤ γ2tC4,

(65)

in light of Corollary 3.1 and Lemma 3.2. Furthermore, due to the well-reservoir interaction we
must also estimate the following term

∫ t

0

∫ 1

0

(∂x([cA]Qβ))2 dx ds =
∫ t

0

∫ 1

0

(
[cA]xQβ + [cA](Qβ)x

)2

dx ds

≤ 2
∫ t

0

∫ 1

0

([cA]x)2Q2β dx ds + 2
∫ t

0

∫ 1

0

[cA]2([Qβ ]x)2 dx ds

≤ 2C2β
2

∫ t

0

∫ 1

0

([cA]x)2 dx ds + 2M2

∫ t

0

∫ 1

0

([Qβ ]x)2 dx ds

≤ C + 2M2

∫ t

0

∫ 1

0

([Qβ ]x)2 dx ds,

(66)
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where we have used that Corollary 3.1, Lemma 3.2, and the assumptions on A imply that [cA] ∈
W 1,2(I). Moreover, for the last term on the right hand side of (62) we have

∫ t

0

∫ 1

0

([cA]u)2 dx ds ≤ M2

∫ t

0

∫ 1

0

u2 dx ds ≤ M2TC1. (67)

In light of (63)–(67), we conclude from (62) that

∫ 1

0

(∂xQβ)2 dx ≤ C + C

∫ t

0

∫ 1

0

(∂xQβ)2 dx ds.

Thus, application of Gronwall’s inequality gives the estimate (59). ¤

The result of the next lemma is crucial. Again we follow along the idea of previous works
[17, 10, 24], however, the proof becomes more involved due to the appearance of additional well-
formation interaction terms.

Lemma 3.4 (Pointwise lower limit). Let 0 < β < 1/3. Then we have a pointwise lower limit on
Q(ρ, k) of the form

Q(ρ, k)(x, t) ≥ C6, ∀(x, t) ∈ [0, 1]× [0, T ], (68)

where the constant C6 = C6(C2, C3, C5, inf [0,1] Q0, sup[0,1] Q0, T, ‖u0‖L2(I), ‖c0‖Lγ(I)).

Proof. We first define

v(x, t) =
1

Q(x, t)
, V (t) = max

[0,1]×[0,t]
v(x, s).

We calculate as follows:

v(x, t)− v(0, t) =
∫ x

0

∂xv dx ≤
∫ 1

0

|∂xQ|v2 dx =
1
β

∫ 1

0

vβ+1|∂xQβ | dx

≤ 1
β

(∫ 1

0

|∂xQβ |2 dx
)1/2(∫ 1

0

v2(β+1) dx
)1/2

≤ C
1/2
5

β

(∫ 1

0

v dx
)1/2(

(max
[0,1]

v(·, t))2β+1
)1/2

≤ C
1/2
5

β

(∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

,

(69)

where we have used (59). Next, we focus on how to estimate
∫ 1

0
v dx. The starting point is the

observation that the second equation of (41) can be written as

vt − ρlux = −[cA]v.

Integrating over [0, 1]× [0, t] we get

∫ 1

0

v(x, t) dx =
∫ 1

0

v(x, 0) dx + ρl

∫ t

0

[u(1, s)− u(0, s)] ds−
∫ t

0

∫ 1

0

[cA]v dx ds

≤ ( inf
[0,1]

Q0)−1 + 2ρl

∫ t

0

max
[0,1]

|u(·, s)| ds + M

∫ t

0

∫ 1

0

v dx ds

≤ ( inf
[0,1]

Q0)−1 + 2ρl

√
t
(∫ t

0

‖u2(s)‖L∞(I) ds
)1/2

+ M

∫ t

0

∫ 1

0

v dx ds,

(70)
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where we have used Hölder’s inequality. In light of Sobolev’s inequality ‖f‖L∞(I) ≤ C‖f‖W 1,1(I)

it follows that the second last term of (70) can be estimated as follows:
∫ t

0

‖u2(s)‖L∞(I) ds ≤ C

∫ t

0

‖u2(s)‖W 1,1(I) ds

= C
(∫ t

0

∫ 1

0

u2 dx ds +
∫ t

0

∫ 1

0

|(u2)x| dx ds
)

≤ CtC1 + 2C

∫ t

0

∫ 1

0

Q
1+β
2 |u||ux|v

1+β
2 ds ds

≤ CtC1 + 2C
(∫ t

0

∫ 1

0

Q1+βu2
xu2 dx ds

)1/2(∫ t

0

∫ 1

0

v1+β dx ds
)1/2

≤ CtC1 + 2CC
1/2
3

(∫ t

0

∫ 1

0

v1+β dx ds
)1/2

,

(71)

where we have used (46) and (48) with q = 2 and Hölder’s inequality. Combining (70) and (71)
we get

∫ 1

0

v(x, t) dx

≤ ( inf
[0,1]

Q0)−1 + 2ρl

√
t
[
CtC1 + 2CC

1/2
3

(∫ t

0

∫ 1

0

v1+β dx ds
)1/2]1/2

+ M

∫ t

0

∫ 1

0

v dx ds

≤ C + C
(∫ t

0

∫ 1

0

v1+β dx ds
)1/4

+ M

∫ t

0

∫ 1

0

v dx ds

= C + C
(∫ t

0

∫ 1

0

v2βv1−β dx ds
)1/4

+ M

∫ t

0

∫ 1

0

v dx ds

≤ C + CV (t)2β/4
(∫ t

0

∫ 1

0

v1−β dx ds
)1/4

+ MV (t)β

∫ t

0

∫ 1

0

v1−β dx ds,

(72)

where C = C(inf [0,1] Q0, C1, T ). Now we focus on estimating
∫ t

0

∫ 1

0
v1−β dx ds. For that purpose,

we note that the second equation of (41), by multiplying with Q
β−1

2 −1, can be written as

(Q
β−1

2 )t = ρl
1− β

2
Q

β+1
2 ux − 1− β

2
[cA]Q

β−1
2 .

Integrating this equation over [0, t] we get

Q
β−1

2 (x, t) = Q
β−1

2 (x, 0) + ρl
1− β

2

∫ t

0

Q
β+1
2 ux ds− 1− β

2

∫ t

0

[cA]Q
β−1

2 ds.

Consequently, using the inequality (a + b)2 ≤ 2a2 + 2b2 we get

Qβ−1(x, t) ≤ 2Qβ−1(x, 0) + 4ρ2
l

(1− β

2

)2(∫ t

0

Q
β+1
2 ux ds

)2

+ 4
(1− β

2

)2(∫ t

0

[cA]Q
β−1

2 ds
)2

≤ 2Qβ−1(x, 0) + ρ2
l t(1− β)2

∫ t

0

Qβ+1u2
x ds + M2t(1− β)2

∫ t

0

Qβ−1 ds,

by Hölder’s inequality. Integrating over [0, 1] in space yields
∫ 1

0

v1−β dx =
∫ 1

0

Qβ−1 dx

≤ 2
∫ 1

0

v1−β(x, 0) dx + ρ2
l t(1− β)2

∫ 1

0

∫ t

0

Qβ+1u2
x ds dx + M2t(1− β)2

∫ 1

0

∫ t

0

Qβ−1 ds dx

≤ C + M2t(1− β)2
∫ t

0

∫ 1

0

v1−β dx ds,

(73)
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with C = C(inf [0,1] Q0, C1, T ) where we have used (46). Thus, by Gronwall’s inequality we con-
clude that ∫ 1

0

v1−β dx ≤ C( inf
[0,1]

Q0, C1,M, T ). (74)

Consequently, (72) and (74) imply that
∫ 1

0

v(x, t) dx ≤ C + D[V (t)β/2 + V (t)β ] ≤ E[1 + V (t)β/2 + V (t)β ], (75)

for appropriate constants C, D and E that depend essentially on inf [0,1] Q0,M, T,C1. Substituting
(75) into (69) we get

v(x, t)− v(0, t) ≤ C
1/2
5

β

(∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

≤ (C5E)1/2

β
[1 + V (t)β/2 + V (t)β ]1/2V (t)β+1/2

≤ F [1 + V (t)β/4 + V (t)β/2]V (t)β+1/2

≤ F max(CV (t)(3/2)β+1/2, 3),

(76)

for F = F (C5, E). Here we have used the inequality (1+xβ/4 +xβ/2)xβ+1/2 ≤ Cx(3/2)β+1/2 which
holds for x ≥ 1 and an appropriate constant C ≥ 3. This follows by observing that

f(x) = Cx(3/2)β+1/2 − xβ+1/2(1 + xβ/4 + xβ/2) = xβ+1/2((C − 1)xβ/2 − 1− xβ/4)

≥ xβ+1/2((C − 1)xβ/2 − 1− xβ/2) = xβ+1/2((C − 2)xβ/2 − 1) ≥ 0,

for x ≥ 1 and C ≥ 3.
We must check that v(0, t) remains bounded in [0, T ]. From the boundary condition (44) we

have
cγQγ −Qβ+1ux

∣∣∣
x=0

= 0.

Since A(0, t) = 0, we get that uxQ2ρl = −Qt for x = 0. Hence, we also get

y′ = −K(t)yγ−β+1,

where
K(t) = ρlc(0, t)γ = ρlc0(0)γ = K, y(t) = Q(0, t), y0 = Q(0, 0),

where we have used that A(0, t) = 0. Hence,

1
β − γ

(yβ−γ − yβ−γ
0 ) = −Kt, or yβ−γ = −K(β − γ)t + yβ−γ

0 .

Equivalently,

(y−1)γ−β = (y−1
0 )γ−β

(
K(γ − β)yγ−β

0 t + 1
)
.

Consequently,

v(0, t) = v(0, 0)
(
K(γ − β)Q(0, 0)γ−βt + 1

)1/(γ−β)

≤ C(sup
[0,1]

c0, inf
[0,1]

Q0, sup
[0,1]

Q0, T ), t ∈ [0, T ].

In conclusion, from (76) we have

V (T ) ≤ C + 3F max
(
V (T )(3/2)β+1/2, 1

)
.

Since β < 1/3 we see that (3/2)β+1/2 < 1. Therefore, it is clear from the inequality x ≤ C(1+xξ)
with 0 < ξ < 1, that x ≤ G for some constant G. Consequently, V (T ) ≤ G where (in view of the
above estimates)

G = G(C2, C3, inf
[0,1]

Q0, sup
[0,1]

Q0, T, ‖u0‖L2(I), ‖c0‖Lγ(I)).

Thus, the result (68) follows. ¤
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Now, we can directly deduce the following pointwise estimates which ensure that no transition
to single-phase flow occurs.

Corollary 3.2. There is a constant µ = µ(C2, C6) > 0 such that for (x, t) ∈ [0, 1] × [0, T ], we
have

0 <µ ≤ ρ(x, t), [1− c]ρ(x, t) ≤ ρl − µ < ρl (77)

0 <µ inf
x∈[0,1]

(c) ≤ n(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c) < ∞, (78)

for c = n/ρ.

Proof. In view of (39) and the bounds (47) and (68) it is clear that there is a µ > 0 such that
(77) holds. Consequently,

0 < µ inf
x∈[0,1]

(c) ≤ n = cρ ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c) < ∞,

where we have used the estimates (36) of Corollary 3.1. ¤

Corollary 3.3. We have the estimates
∫ 1

0

(∂xρ)2 dx ≤ C7,

∫ 1

0

(∂xn)2 dx ≤ C8, (79)

for a constant C7 = C7(C2, C4, C5, C6) and C8 = C8(C2, C4, C5, C6).

Proof. It follows that

∂xQ(ρ, k)β = βQ(ρ, k)β−1[Qρ∂xρ + Qk∂xk] = βQ(ρ, k)β+1
[ ρl

ρ2
∂xρ + ∂xk

]
.

In view of this calculation and the pointwise upper and lower limits for Q(ρ, k), as well as ρ, given
by (47), (68), and Corollary 3.2, it follows by application of Lemma 3.2 and Lemma 3.3 that the
first estimate of (79) holds. The second follows directly from the relation

∂xn = ρ∂xc + c∂xρ, since n = cρ,

and the corresponding estimate
∫ 1

0

(∂xn)2 dx ≤ 2( sup
x∈[0,1]

ρ)2
∫ 1

0

(∂xc)2 + 2( sup
x∈[0,1]

c)2
∫ 1

0

(∂xρ)2 dx ≤ C8,

where we use the first estimate of (79), Lemma 3.2 and Corollary 3.2. ¤

4. Proof of existence result

Now focus is on the model (20). All arguments in this section closely follow along the line
of [17], however, for completeness we include the main steps. First, we introduce the Friedrichs
mollifier jδ(x). Let ψ(x) ∈ C∞0 (R) satisfy ψ(x) = 1 when |x| ≤ 1/2 and ψ(x) = 0 when |x| ≥ 1,
and define ψδ := ψ(x/δ).

Mollifying. We extend n0, ρ0, u0 to R by using

n0(x) :=





n0(1), x ∈ (1,∞),
n0(x), x ∈ [0, 1],
n0(0), x ∈ (−∞, 0),

ρ0(x) :=





ρ0(1), x ∈ (1,∞),
ρ0(x), x ∈ [0, 1],
ρ0(0), x ∈ (−∞, 0),

whereas we extend u0(x) to R by defining it to be zero outside the interval [0, 1]. Approximate
initial data (nδ

0, ρ
δ
0, u

δ
0) to (n0, ρ0, u0) are now defined as follows:
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nδ
0(x) = (n0 ∗ jδ)(x), ρδ

0(x) = (ρ0 ∗ jδ)(x),

uδ
0 = (u0 ∗ jδ)(x)[1− ψδ(x)− ψδ(1− x)] + (u0 ∗ jδ)(0)ψδ(x) + (u0 ∗ jδ)(1)ψδ(1− x)

+ (cδ
0)

γQ(ρδ
0)

γ−β−1(0)
∫ x

0

ψδ(y) dy − (cδ
0)

γQ(ρδ
0)

γ−β−1(1)
∫ 1

x

ψδ(1− y) dy.

(80)

Then it follows that nδ
0, ρ

δ
0 ∈ C1+s[0, 1], uδ

0 ∈ C2+s[0, 1] for any 0 < s < 1, and nδ
0, ρ

δ
0 and uδ

0 are
compatible with the boundary conditions (23). Moreover, it follows that

|(u0 ∗ jδ)(0)|2q

∫ 1

0

ψ2q
δ dx ≤ Cδ

(∫ δ

0

u0(x)jδ(x) dx
)2q

≤ Cδ

∫ δ

0

u2q
0 dx

(∫ δ

0

j
2q/(2q−1)
δ (x) dx

)2q−1

≤ C

∫ δ

0

u2q
0 (x) dx → 0 as δ → 0.

Similarly, it follows that |(u0 ∗ jδ(1)|2q
∫ 1

0
ψ2q

δ (1− x) dx → 0. Therefore, recalling the definition of
uδ

0(x) we see that as δ → 0,

uδ
0 → u0 in L2q(I). (81)

In addition,

nδ
0 → n0, ρδ

0 → ρ0 uniformly in [0, 1], (82)

as δ → 0.
Now, we consider the initial boundary value problem (20)–(24) with the initial data (n0, ρ0, u0)

replaced by (nδ
0, ρ

δ
0, u

δ
0). For this problem standard arguments can be used (the energy estimates

and the contraction mapping theorem) to obtain the existence of a unique local solution (nδ, ρδ, uδ)
with nδ, nδ

t , n
δ
x, nδ

tx, ρδ, ρδ
x, ρδ

t , ρ
δ
tx, uδ, uδ

x, uδ
t , u

δ
xx ∈ Cα,α/2([0, 1]× [0, T ∗]) for some T ∗ > 0.

In view of the estimates of Section 3.2, it follows that nδ and ρδ are pointwise bounded from
above and below, (uδ)q, nδ

x, and ρδ
x are bounded in L∞([0, T ], L2(I)) and uδ

x is bounded in
L2((0, T ), L2(I)) for any T > 0. Furthermore, we can differentiate the equations in (20) and
apply the energy method to derive bounds of high-order derivatives of (nδ, ρδ, uδ). Then the
Schauder theory for linear parabolic equations can be applied to conclude that the Cα,α/2(DT )-
norm of nδ, nδ

t , n
δ
x, nδ

tx, ρδ, ρδ
x, ρδ

t , ρ
δ
tx, uδ, uδ

x, uδ
t , u

δ
xx is a priori bounded. Therefore, we can continue

the local solution globally in time and obtain that there exists a unique global solution (nδ, ρδ, uδ)
of (20)–(24) with initial data (nδ

0, ρ
δ
0, u

δ
0) such that for any T > 0, the regularity of (29) holds.

Estimates and Compactness. Clearly, in view of the estimates of Section 3 and the model
itself (20), we have

∫ 1

0

(uδ)2q(x, t) dx +
∫ 1

0

(nδ
x)2(x, t) dx +

∫ 1

0

(ρδ
x)2(x, t) dx ≤ C, t ∈ [0, T ], q ∈ N,

0 < µ ≤ ρδ(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c),

0 < µ inf
x∈[0,1]

(c) ≤ nδ(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c), for (x, t) ∈ [0, 1]× [0, T ],

∫ T

0

∫ 1

0

[
(uδ

x)2 + (nδ
t )

2 + (ρδ
t )

2
]
(x, s) dx ds ≤ C,

(83)

where the constants C, µ > 0 do not depend on δ. Note that the boundedness of ρδ
t (and nδ

t ) in
L2([0, T ], L2(I)) follows in view of the equation ρδ

t + (ρδ)2uδ
x = nA (and nδ

t + nδρδuδ
x = nA), the

estimates of Corollary 3.2, and the energy estimate (46) of Lemma 3.1. Hence, we can extract a
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subsequence of (nδ, ρδ, uδ), still denoted by (nδ, ρδ, uδ), such that as δ → 0,

uδ ⇀ u weak-* in L∞([0, T ], L2q(I)),

nδ ⇀ n weak-* in L∞([0, T ],W 1,2(I)),

ρδ ⇀ ρ weak-* in L∞([0, T ],W 1,2(I)),

(nδ
t , ρ

δ
t , u

δ
x) ⇀ (nt, ρt, ux) weakly in L2([0, T ], L2(I)).

(84)

Next, we show that (n, ρ, u) obtained in (84) in fact is a weak solution of (20)–(24). The classical
Sobolev imbedding (Morrey’s inequality) W 1,2q(0, 1) ↪→ C1−1/(2q)[0, 1] applied with q = 1 gives
that for any x1, x2 ∈ (0, 1) and t ∈ [0, T ]

|ρδ(x1, t)− ρδ(x2, t)| ≤ C|x1 − x2|1/2. (85)

To control continuity in time, in view of the sequence of imbeddings W 1,2(0, 1) ↪→ L∞(0, 1) ↪→
L2(0, 1), we can apply Lions-Aubin lemma (see for example [20], Section 1.3.12) for a constant
ν > 0 (arbitrary small) to find a constant Cν such that

‖ρδ(t1)− ρδ(t2)‖L∞(I) ≤ ν‖ρδ(t1)− ρδ(t2)‖W 1,2(I) + Cν‖ρδ(t1)− ρδ(t2)‖L2(I)

≤ 2ν‖ρδ(t)‖W 1,2(I) + Cν |t1 − t2|1/2‖ρδ
t‖L2([0,T ],L2(I))

≤ Cν + CνC|t1 − t2|1/2,

(86)

where we have used (83) to derive the last two inequalities. Consequently, (85) and (86) together
with the triangle inequality show that {ρδ} is equi-continuous on DT = [0, 1] × [0, T ]. Hence, by
Arzela-Ascoli’s theorem and a diagonal process for t, we can extract a subsequence of {ρδ}, such
that

ρδ(x, t) → ρ(x, t) strongly in C0(DT ). (87)
The same arguments apply to n yielding

nδ(x, t) → n(x, t) strongly in C0(DT ). (88)

Clearly, ρt is also bounded in L2([0, T ], L2(I)) and from the estimate

‖ρ(t1)− ρ(t2)‖2L2(I) =
∫ 1

0

|ρ(t1)− ρ(t2)|2 dx =
∫ 1

0

∣∣∣
∫ t2

t1

ρt ds
∣∣∣
2

dx ≤
∫ 1

0

(∫ t2

t1

|ρt| ds
)2

dx

≤ |t1 − t2|
∫ T

0

∫ 1

0

ρ2
t dx ds,

where we have used Hölder’s inequality, we may also conclude that

ρ ∈ C1/2([0, T ], L2(I)). (89)

Similarly, the same arguments apply to n. Thus, we conclude that the limit functions (n, ρ, u)
from (84) satisfy the first two equations nt + nρux = nA and ρt + ρ2ux = nA of (28) for a.e.
x ∈ (0, 1) and any t ≥ 0. To show that the last integral equality holds, we multiply the third
equation of (20) by φ ∈ C∞0 (D) with D = [0, 1]× [0,∞) and integrate over (0, T )× (0, 1), followed
by integration by parts with respect to x and t. Taking the limit as δ → 0, we see that (n, ρ, u)
also must satisfy weakly the third equation of (28).

5. A uniqueness result

In this section we present a uniqueness result for the two-phase model (20) similar to the one
presented in [10] for the gas-liquid model with A = 0 and the simplified momentum equation given
by (3). For that purpose we need more regularity of the fluid velocity u. More precisely, for initial
data u0 ∈ H1(I) we have the following result.

Lemma 5.1. Let (n, ρ, u) be a weak solution of (20)–(24) in the sense of Theorem 2.1. If u0 ∈
H1(I), then

u ∈ L∞([0, T ],H1(I)) ∩ L2([0, T ],H2(I)), ut ∈ L2([0, T ], L2(I)). (90)
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More precisely, the following estimate holds:

‖ut‖L2(DT ) + ‖uxx‖L2(DT ) + ‖ux‖L∞([0,T ],L2(I)) ≤ C, (91)

where the constant C depends on the quantities involved in the estimates of Lemma 3.1–3.4.

Proof. We consider the global smooth solutions (nδ, ρδ, uδ) described in the previous section with
initial data (nδ

0, ρ
δ
0, u

δ
0) which possess smoothness properties as described by (29). It follows that

(see Section 3 in [17] for more details)

∂xuδ
0 → ∂xu0 in L2(I). (92)

For the coming calculation the superscript δ is neglected. We multiply the third equation of (41)
by ut and integrate over [0, 1]× [0, T ]. Applying integration by parts together with the boundary
condition (44) we get

∫ t

0

∫ 1

0

u2
t dx ds−

∫ 1

0

[P (c,Q)ux − E(Q)u2
x] dx +

∫ 1

0

[P (c0, Q0)u0,x − E(Q0)u2
0,x] dx

+
∫ t

0

∫ 1

0

[P (c,Q)− E(Q)ux]tux dx ds +
∫ t

0

∫ 1

0

ut[cA]u dx ds = 0.

(93)

For the first term on the second line of (93) we have

[P (c,Q)− E(Q)ux]tux

= γ[cQ]γAux − ρlγcγQγ+1(ux)2 + (β + 1)ρlQ
β+2(ux)3 − (β + 1)[cA]Qβ+1(ux)2 −Qβ+1(

1
2
u2

x)t,

where we have used the second equation of (41). Observing that

Qβ+1(
1
2
u2

x)t = (
1
2
Qβ+1u2

x)t − 1
2
(β + 1)QβQtu

2
x = (

1
2
E(Q)u2

x)t +
1
2
(β + 1)Qβ [ρlQ

2ux − cAQ](ux)2

= (
1
2
E(Q)u2

x)t +
1
2
ρl(β + 1)Qβ+2(ux)3 − 1

2
(β + 1)[cA]Qβ+1(ux)2,

it follows that
∫ t

0

∫ 1

0

[P (c,Q)− E(Q)ux]tux dx ds

= −ρlγ

∫ t

0

∫ 1

0

cγQγ+1(ux)2 dx ds +
1
2
(β + 1)ρl

∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds

+ γ

∫ t

0

∫ 1

0

[cQ]γAux dx ds− 1
2
(β + 1)

∫ t

0

∫ 1

0

[cA]Qβ+1(ux)2 dx ds

− 1
2

∫ 1

0

E(Q)u2
x dx +

1
2

∫ 1

0

E(Q0)u2
0,x dx.

(94)

From (93) and (94) it follows that
∫ t

0

∫ 1

0

u2
t dx ds +

1
2

∫ 1

0

E(Q)u2
x dx

=
1
2

∫ 1

0

E(Q0)u2
0,x dx +

∫ 1

0

P (c,Q)ux dx−
∫ 1

0

P (c0, Q0)u0,x dx

+ ρlγ

∫ t

0

∫ 1

0

cγQγ+1(ux)2 dx ds− 1
2
(β + 1)ρl

∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds

− γ

∫ t

0

∫ 1

0

[cQ]γAux dx ds +
1
2
(β + 1)

∫ t

0

∫ 1

0

[cA]Qβ+1(ux)2 dx ds−
∫ t

0

∫ 1

0

ut[cA]u dx ds.

(95)

The second term on the right hand side of (95) can be absorbed in the second term on the left
hand side by using the Cauchy inequality with ε

2ab ≤ εa2 + ε−1b2, a, b > 0, ε > 0. (96)
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Similarly, the last term on the right hand side of (95) can be absorbed in the first term on the left
hand side by use of the estimates of (83), the pointwise bound on [cA], and the inequality (96).
By application of the estimates of (83), regularity of initial data, and regularity on the mass flow
rate function A(x, t) the remaining terms on the right hand side of (95) can be estimated. We
then get an estimate of the form

∫ t

0

∫ 1

0

u2
t dx ds +

∫ 1

0

u2
x dx ≤ C + C

∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds. (97)

The last term of (97), in view of (83), can be estimated as follows:
∫ t

0

∫ 1

0

Qβ+2(ux)3 dx ds ≤ C

∫ t

0

max
x∈[0,1]

(Q1+βux)(·, s)
(∫ 1

0

u2
x dx

)
ds

≤ C

∫ t

0

max
x∈[0,1]

|(E(Q)ux − P (c,Q))(·, s)|
(∫ 1

0

u2
x dx

)
ds + C

∫ t

0

∫ 1

0

u2
x dx ds

≤ C

∫ t

0

(∫ 1

0

|(E(Q)ux − P (c,Q))x| dx
)(∫ 1

0

u2
x dx

)
ds + C

= C

∫ t

0

(∫ 1

0

(|ut|+ |ucA|) dx
)(∫ 1

0

u2
x dx

)
ds + C

≤ 1
2

∫ t

0

∫ 1

0

u2
t dx ds +

1
2

∫ t

0

∫ 1

0

[cAu]2 dx ds + C

∫ t

0

(∫ 1

0

u2
x dx

)2

ds + C,

where we have used Sobolev’s inequality as well as (96) to obtain the last inequality. Inserting
this in (97) gives

∫ t

0

∫ 1

0

u2
t dx ds +

∫ 1

0

u2
x dx ≤ C +

∫ t

0

‖ux(s)‖2L2(I)

∫ 1

0

u2
x dx ds, ∀t ∈ [0, T ]. (98)

Since
∫ T

0
‖ux(s)‖2L2(I) ds < ∞, in view of see (83), application of Gronwall’s inequality to (98)

gives the estimate ∫ t

0

∫ 1

0

u2
t dx ds +

∫ 1

0

u2
x dx ≤ C. (99)

The last equation of (20), the estimates of (83) and the estimate (99) imply that
∫ T

0

∫ 1

0

(uxx)2 dx ds ≤ C. (100)

Thus, (90) and (91) have been shown. ¤

Taking advantage of the additional regularity of Lemma 5.1 we now derive a stability result.

Lemma 5.2. Let (n1, ρ1, u1) be an arbitrary weak solution of (20)–(24), in the sense of Theo-
rem 2.1, which also satisfies the regularity of (90). Let (n2, ρ2, u2) be another weak solution subject
to the same initial data. Then we have the stability estimate

‖u1 − u2‖2L2(I) + ‖Q(ρ1, k)−1 −Q(ρ2, k)−1‖2L2(I)

≤
∫ t

0

C(s)
(
‖Q(ρ1, k)−1 −Q(ρ2, k)−1‖2L2(I) + ‖u1 − u2‖2L2(I)

)
ds,

(101)

where the non-negative constant C(s) satisfies
∫ T

0
C(s) ds < ∞.

Proof. We consider the reformulated model as expressed by (41)–(45). In view of (37) of Corol-
lary 3.1 it follows c1 = c2 := c. In the following it will be useful to work with the quantity
vi = 1/Q(ρi, k), i = 1, 2. We then get

(Qβ
i )t + ρlβQβ+1

i uix = β[cA]Qβ
i , (vi)t = ρluix − [cA]vi, i = 1, 2. (102)

The last equation of (41) yields

(u1−u2)t +([cQ(ρ1, k)]γ − [cQ(ρ2, k)]γ)x = −(u1−u2)[cA] + (Q(ρ1, k)β+1u1x−Q(ρ2, k)β+1u2x)x.
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Multiplying by (u1−u2), integrating over [0, 1] together with integration by parts and application
of boundary conditions (44) give

1
2

d

dt

∫ 1

0

(u1 − u2)2 dx

=
∫ 1

0

([cQ(ρ1, k)]γ − [cQ(ρ2, k)]γ)(u1 − u2)x dx

−
∫ 1

0

(u1 − u2)2[cA] dx−
∫ 1

0

(Q(ρ1, k)β+1u1x −Q(ρ2, k)β+1u2x)(u1 − u2)x dx

=
1
ρl

∫ 1

0

cγ(v−γ
1 − v−γ

2 )(v1 − v2)t dx +
1
ρl

∫ 1

0

cγ(v−γ
1 − v−γ

2 )(v1 − v2)[cA] dx

−
∫ 1

0

(v−(β+1)
1 − v

−(β+1)
2 )(u1x − u2x)u2x dx−

∫ 1

0

Q(ρ1, k)β+1(u1x − u2x)2 dx

−
∫ 1

0

(u1 − u2)2[cA] dx

≤ − 1
2ρl

d

dt

∫ 1

0

cγa(x, t)(v1 − v2)2 dx +
1

2ρl

∫ 1

0

cγat(x, t)(v1 − v2)2 dx

+
γ

2

∫ 1

0

cγkAa(x, t)(v1 − v2)2 dx +
1
ρl

∫ 1

0

cγ(v−γ
1 − v−γ

2 )(v1 − v2)[cA] dx

+
C0

2

∫ 1

0

(u1x − u2x)2 dx + C

∫ 1

0

(v1 − v2)2(u2x)2 dx− C0

∫ 1

0

(u1x − u2x)2 dx

+ M

∫ 1

0

(u1 − u2)2 dx,

(103)

for appropriate constants C0 and C. Here we have used that

a(x, t) =
f(v1)− f(v2)

v1 − v2
=

∫ 1

0

f ′(τ(v1 − v2) + v2) dτ = γ

∫ 1

0

1
(τ(v1 − v2) + v2)(γ+1)

dτ, (104)

with f(v) = −v−γ , i.e. f ′(v) = γv−(γ+1) so that

∫ 1

0

cγ(v−γ
1 − v−γ

2 )(v1 − v2)t dx = −
∫ 1

0

cγa(x, t)(v1 − v2)(v1 − v2)t dx

= −1
2

∫ 1

0

cγa(x, t)((v1 − v2)2)t dx

= −1
2

d

dt

∫ 1

0

cγa(x, t)(v1 − v2)2 dx +
1
2

∫ 1

0

cγat(x, t)(v1 − v2)2 dx +
γ

2

∫ 1

0

cγkAa(x, t)(v1 − v2)2 dx.

In addition, we have used that |g(y1) − g(y1)| ≤ max |g′(y)||y1 − y2| for g(y) = y−(β+1) together
with the upper and lower limits for vi, i = 1, 2 given by (83), as well as the inequality (96). These
estimates also imply that a(x, t) given by (104) has a positive lower limit on DT = [0, 1]× [0, T ].
Moreover,

at(x, t) =
∫ 1

0

f ′′(τ(v1 − v2) + v2)(τ(v1t − v2t) + v2t) dτ,

so that

|at(x, t)| ≤
∫ 1

0

|f ′′(τ(v1 − v2) + v2)|(τ |v1t − v2t|+ |v2t|) dτ ≤ C(|v1t − v2t|+ |v2t|),



WEAK SOLUTIONS FOR A GAS-LIQUID MODEL WITH WELL-FORMATION INTERACTION 23

where C depends on lower and upper limits of v1 and v2. Consequently,

1
2ρl

∫ 1

0

cγat(x, t)(v1 − v2)2 dx ≤ C

∫ 1

0

(|v1t − v2t|+ |v2t|)(v1 − v2)2 dx

= C

∫ 1

0

|v1t − v2t|(v1 − v2)2 dx + C

∫ 1

0

|v2t|(v1 − v2)2 dx

≤ Cε

∫ 1

0

(v1t − v2t)2(v1 − v2)2 dx + Cε−1

∫ 1

0

(v1 − v2)2 dx + C

∫ 1

0

|v2t|(v1 − v2)2 dx

≤ C0

4ρ2
l

∫ 1

0

(v1t − v2t)2 dx + C

∫ 1

0

(1 + |v2t|)(v1 − v2)2 dx

=
C0

4

∫ 1

0

(u1x − u2x)2 dx +
C0M

2

4ρ2
l

∫ 1

0

(v1 − v2)2 dx + C

∫ 1

0

(1 + |v2t|)(v1 − v2)2 dx,

where we have used (96) with an appropriate choice of ε > 0, the upper and lower limits of v1 and
v2, and (102). Inserting this in (103) we get

1
2

d

dt

∫ 1

0

(u1 − u2)2 dx +
1

2ρl

d

dt

∫ 1

0

cγa(x, t)(v1 − v2)2 dx +
C0

4

∫ 1

0

(u1x − u2x)2 dx

≤ C

∫ 1

0

(1 + ρl|u2x|+ Mv2)(v1 − v2)2 dx + D

∫ 1

0

(v1 − v2)2(u2x)2 dx + M

∫ 1

0

(u1 − u2)2 dx

≤ C

∫ 1

0

[(1 + ρl|u2x|)2 + Mv2](v1 − v2)2 dx + M

∫ 1

0

(u1 − u2)2 dx,

(105)

for a suitable choice of the constant C. Integrating over [0, t] we get the inequality
∫ 1

0

(u1 − u2)2 dx +
∫ 1

0

cγa(x, t)(v1 − v2)2 dx +
∫ t

0

∫ 1

0

(u1x − u2x)2 dx ds

≤ C

∫ t

0

∫ 1

0

[(1 + |u2x|)2 + Mv2](v1 − v2)2 dx ds + M

∫ t

0

∫ 1

0

(u1 − u2)2 dx ds.

(106)

Using that infx∈[0,1] a(x, t) > 0 and infx∈[0,1] c(x, t) > 0 as well as the pointwise upper bound on
v2 we get
∫ 1

0

(u1 − u2)2(x, t) dx +
∫ 1

0

(v1 − v2)2(x, t) dx

≤ C

∫ t

0

∫ 1

0

(1 + |u2x|)2(v1 − v2)2(x, s) dx ds + M

∫ t

0

∫ 1

0

(u1 − u2)2(x, s) dx ds

≤ C

∫ t

0

‖(1 + |u2x|)2‖L∞(I)

∫ 1

0

(v1 − v2)2(x, s) dx ds + M

∫ t

0

∫ 1

0

(u1 − u2)2(x, s) dx ds.

(107)

From this the estimate (101) follows. Finally, by Sobolev’s imbedding theorem we have ‖f‖L∞(I) ≤
C‖f‖W 1,1(I) which implies that

∫ t

0

‖(1 + u2x)2‖L∞(I) ds ≤ C

∫ t

0

‖(1 + u2x)2‖W 1,1(I) ds

= C

∫ t

0

∫ 1

0

(1 + u2x)2 dxds + C

∫ t

0

∫ 1

0

|((1 + u2x)2)x| dx ds

≤ C + C

∫ t

0

∫ 1

0

|(1 + u2x)u2xx| dx ds

≤ C + C
(∫ t

0

∫ 1

0

(1 + u2x)2 dx ds
)1/2(∫ t

0

∫ 1

0

u2
2xx dx ds

)1/2

≤ C,

since u2 ∈ L∞([0, T ],H1(I)) ∩ L2([0, T ],H2(I)) (see Lemma 5.1). ¤
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Now, we can conclude that the following uniqueness result holds.

Theorem 5.1 (Uniqueness). Under the assumptions of Theorem 2.1 and the additional regularity
assumption u0 ∈ H1(I), the weak solutions are unique.

Proof. Clearly, the results of Lemma 5.1 and Lemma 5.2 hold which lead to the inequality (101).
Thus, application of Gronwall’s inequality to (101) yields immediately that

Q(ρ1(x, t), k) = Q(ρ2(x, t), k), u1(x, t) = u2(x, t) a.e. (x, t) ∈ DT = [0, 1]× [0, T ].

The fact that Q(ρ, k) is monotone relatively ρ implies the desired result. ¤
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