
Interpolating Probability Values or Fuzzy Set Values for Uncertain
Spatiotemporal Objects

Erlend Tøssebro
Department of Computer Science and Electrical Engineering

University of Stavanger
Stavanger, Norway

erlend.tossebro@uis.no

Abstract - This paper looks at ways of quickly interpolating
probability values or fuzzy set values for uncertain
spatiotemporal objects that may change continuously over
time. The paper starts with presenting a way to compute a
tetrahedralization of an uncertain spatiotemporal object and
using that to compute consistent interpolations. This
approach also turns out to be able to create fairly good
interpolations of the shape of the spatiotemporal object
without needing an extra algorithm for this purpose.
However, a naïve use of any tetrahedralization turns out to
create interpolation artifacts in those objects that become
significantly more or less uncertain with time. The paper
then presents a way to overcome this issue at the cost of
more processing.

Keywords: Interpolation, Spatio-temporal uncertainty,
Tetrahedralization

I. INTRODUCTION
In [17] and [18], a method for storing uncertainty in

spatiotemporal data was presented. The method is based
around storing a region in which the object might be,
called the support (a term from fuzzy set theory [20]). For
regions an additional region is stored that indicated where
the object certainly is, called the core. [19] presents a
method for quickly interpolating the probability functions
for non-temporal two-dimensional spatial data using a
Delaunay triangulation of the support. This method does
not assume a particular probability function but is used to
quickly generate approximate probability values where the
function is unknown or very time-consuming to calculate.

This paper presents an algorithm for quickly
interpolating probabilities or fuzzy set values that works
for spatiotemporal objects as well. It is based on the
uncertain time slice model for uncertain spatiotemporal
objects as presented in [18] and described in section II.B
and II.C. A time slice of a spatiotemporal object is a
special case of a 3D object, and creating something like a
Delaunay triangulation in three dimensions is significantly
more complex than for the two-dimensional case in [19].

Two example applications of such a system are given
below:

Example 1: If you are trying to determine the habitat of
a species of plant or animal, you have to rely on
observations of that plant or animal. Secondly, species
often have areas in which they may appear but are not
common. Such a habitat may be represented by a fuzzy set
in which the degree of membership indicates whether the
species is common or rare there. For animal habitats a
value of 1.0 might indicate areas in which the animals
usually live while a value close to 0 might indicate an area

in which the animals may occasionally wander but do not
remain for long. Because of both natural factors and
human activities the habitats of both plants and animals
change continuously. For instance the king crab is steadily
spreading southwards along the northern European
Atlantic coastline from where it was first introduced by the
Russians.

Example 2: [9] mentions an example of uncertain
spatiotemporal regions: The extent of kingdoms in the
distant past. The evidence of the extent of past kingdoms
and empires must be based on archaeological evidence and
what textual evidence remains. This textual evidence was
often written to glorify particular kings or emperors and
may have exaggerated the size of their empires. These
borders are often highly uncertain and changed with time.
While the changes may have been discrete (conquests)
when they occurred, we do not know exactly when they
occurred and it is therefore better to visualize the extents as
continuously changing, and use color shading to represent
the estimated likelihood of the empire extending that far.

Another use for the method is as an interpolator for
uncertain spatiotemporal objects. Like the algorithm in
[16], this method produces an interpolation of an object
between two snapshots. The original intention when this
work was begun was to use the interpolation method from
[16] to create the core and support boundaries and then
tetrahedralize the support. However, it was discovered that
the tetrahedralization algorithm itself was capable of
producing a good interpolation, so interpolating the
boundaries in advance was not necessary.

A third use of the algorithm is to create temporal
version of a triangulated irregular network (TIN). This can
be used to create a spatiotemporal field. If the entire TIN is
updated at the same time the tetrahedralization generated
by the algorithm in this paper can be used to create a
spatiotemporal field model. The algorithm requires that the
entire TIN is updated at the same time but does not require
that the same measurement points are used each time. If
the TIN is not updated at the same time, there are several
algorithms already published that can be used (See section
II.A). These have a longer running time but are more
general.

II. RELATED WORK
This section is divided into three subsections because

this paper draws on work in three different directions. 3D
Triangulations is work on creating tetrahedralizations (the
3D equivalent of a triangulation) of 3D objects. This is
used in this paper to create a representation of an uncertain
time slice of the object as a 3D object. Spatiotemporal

databases and uncertainty in spatiotemporal databases are
the remaining two sections.

A. 3D Triangulation (tetrahedralization)
The 3D Delaunay triangulation is the inverse of the 3D

Voronoi diagram in the same manner as for 2D. This 3D
Voronoi diagram can be computed in O(n2) time
according to [3] page 161. According to [13], the
Delaunay triangulation of any dimension can be computed
in O(n*t) time where n is the number of points and t is the
number of simplices in the final result. In most cases this
is O(n2 + t*log(n)) according to [14]. The topic of
generating a Delaunay tetrahedralization of general three-
dimensional shapes has been extensively studied in the
computational geometry community. [2] and [15] are
other examples of papers studying variants of this
problem. The problem in [2] resembles the problem in this
paper as it looks on three-dimensional regions that have
been split into slices so that the only vertices are in the top
and bottom planes. It differs in that the boundary of the
object is specified in advance whereas the algorithm
proposed in this paper is free to set the boundary of the
interpolation. Using tetrahedralizations for shape blending
has been done in for instance [8], but this paper does not
describe how to compute the tetrahedralization and has a
very different focus from this work.

B. Spatiotemporal databases
The model for uncertainty in spatiotemporal databases

presented in this paper will build on the time slice model
for spatial data presented in [6].

If one assumes that one starts with a series of
snapshots of the continuously moving object, a time slice
is the time period between two snapshots. In each such
period the object is assumed to change based on fairly
simple functions. An example of this is shown in Figure
1a.

A point moves along a straight line. The end points of
a line segment also move in a straight line, and the line
segment itself cannot rotate. This restriction is there to
ensure that the squares that are formed in space-time are
planar rather than curved. Planar squares are much easier
to deal with than curved ones. A line segment that rotate
is transformed into two line segments each of which
shrink to a point in the other snapshot like shown in
Figure 1b.

In [16], a method for generating time slices like those
from [6] from snapshots is presented. This works by
building a 3D representation of the snapshot that is able to

produce intermediate results for times between the
snapshots. Because it is very unlikely that a line segment
does not rotate at all, this method assumes that all line
segments in one snapshot should be matched to points in
the other like shown in Figure 1b.

C. Spatiotemporal uncertainty
[5] contains a model of uncertain points and shows

some computations on this model. [11] contains a general
model of spatiotemporal objects and [12] shows one
example of how to use it for moving points. [10] describes
a conceptual model of the different kinds of uncertainty
that exist in a spatiotemporal database. [1] describes an
algebra of uncertain moving points on a road network.

The basic method for representing uncertainty in
spatial databases that is used in this paper was presented
in [17]. In this representation an uncertain spatial object is
represented as a support region, even if the object is a
point or line. The support region is the region in which the
object might possibly be. Region objects also have a core,
which is the place where the object is guaranteed to be.
Uncertain points and lines instead have a point or line of
maximum probability which is the point or line in which
the object is most likely to be.

In some applications (like the one from Example 1),
one might want to compute the probability or fuzzy set
value of the object in a location in the support. The
method from [17] assumes that the probability falls from
the core to the outer edge of the support according to
some predefined function. One way to do this that ensures
consistent answers is to create a triangulation of the
support and use the triangulation to compute the
probability value or fuzzy set value. Consistent answers in
this case means that the answer to the question “Find the
border of the area with at least 50% chance of being inside
the object” is consistent with the answer to the question
“find the probability of point X being inside the object”.

The probability function is assumed to take an input
value that is between 0 and 1. This value indicates the
relative distance to the edge of the support where 0 is at
the edge of the support and 1 is at the edge of the core. To
find the distance value of a point, compute the 3D plane
defined by the triangle, with the value as the third
dimension, and then find the distance as the height (value)
of the plane at that point.

 [19] presents a method for computing such a
triangulation for a single snapshot using constrained
Delaunay triangulation ([4]) as a basis. This paper will
extend that method to an entire time slice.

Figure 1: Sliced Representation of spatiotemporal objects

III. TRIANGULATING SPATIOTEMPORAL OBJECTS
A database storing temporal geographic objects can be

compared to a database storing three-dimensional spatial
objects. This means that to extend the triangulation-based
method of computing probabilities to the spatiotemporal
case one would need to create a three-dimensional
triangulation – a tetrahedralization. As mentioned in
section II.A, many algorithms have already been
developed for this purpose. A new algorithm was
developed both in order to try to make one that is faster
than existing solutions for this special case and to see if
the tetrahedralization algorithm could also be used for
shape interpolation. Another goal is to test whether such
an algorithm always generates a result for the special case
studied here. In the general case one cannot always create
a constrained Delaunay tetrahedralization without
inserting extra points [13].

This paper will not consider temporal uncertainty in
the snapshots. [18] describes some ways of eliminating
that uncertainty from the data model by converting it into
spatial uncertainty, and this paper assumes that such a
method has been used prior to the tetrahedralization.

The basic idea of the algorithm is to use the Delaunay
triangulations of the two snapshots as a basis for creating
the 3D tetrahedralization. Thus the first step is to
construct a legal constrained Delaunay triangulation of
each snapshot using the algorithm from [19]. After this
the algorithm has two steps:

A. Creating Tetrahedrons from Triangles
After the triangulation is created, each triangle in one

snapshot is matched to a point in the second, forming the
initial tetrahedralization. This matching process is done in
three passes. In the first pass each triangle is matched to
the closest vertex in the other snapshot. Then the algorithm

checks whether it overlaps any of the previously generated
tetrahedrons. If it does, the tetrahedron is discarded and the
algorithm moves on to the next triangle and tries to match
that. This process is illustrated for a single triangle in
Figure 2. In Figure 2, the core of the region is black and
the support is gray-shaded.

In the second pass, the algorithm tries to construct legal
(non-overlapping) tetrahedrons for the triangles that were
discarded in step 1 due to the tetrahedron overlapping
another tetrahedron. It constructs the tetrahedrons using
other points from the other snapshot, starting with the next
closest. The current implementation of the application tries
the ten nearest neighbors, testing for overlap until it finds
one that does not overlap or it has used up the ten
neighbors. The number ten was chosen to test enough
points without testing all the points. A version testing all
the points did not work noticeably better.

In the third pass, the algorithm creates a tetrahedron for
each triangle remaining after the second pass by matching
it to the nearest neighbor (the same tetrahedron that was
tried in the first pass). Then a list of overlapping tetrahedra
is created. The algorithm then tries to create new
tetrahedral from the triangles that were used to create the
tetrahedra in the overlap list. It created these new
tetrahedra using the same method as in the second pass.

This method almost always manages to find a correct
match for all the triangles. In the few remaining cases,
moving a series of matches manually has always produced
a good result. A Schönhardt polyhedron or other
untetrahedralizable shape has not occurred in any of the
tests of the program. Additionally, the algorithm has a
random element (because the triangulation algorithm used
is randomized and creates different triangulations each
time it is run. Thus the triangles arrive in different orders
to the tetrahedralizer). This means that even if the
algorithm failed once it may succeed next time for the
same time slice of the same object.

B. Filling in the Gaps
The tetrahedralization generated in Section III.A will

be good at the time of the snapshots but will have large
holes in between. In Figure 3a and b, this initial
tetrahedralization of the two snapshots from Figure 2 is
used to generate a snapshot halfway between the two
initial snapshots. Figure 4a shows the tetrahedral as well as
the in-between state. The holes in the tetrahedralization are
readily apparent. However, these holes are themselves
tetrahedra or a set of tetrahedra. None of the tests of the
algorithm have turned up a case where this was not true,
but the author has no mathematical proof that this is
always the case. The basic idea for filling the gaps is to

Figure 2: Matching a triangle to a point

a) Snapshots b) In-between state, only initial tetrahedra c) After gap filling

Figure 3: Example of the gap-filling algorithm

check the edges of the tetrahedra. Each tetrahedron is
bounded by four triangular surfaces. Those surfaces that go
between snapshots should have a tetrahedron on each side.
For each surface that goes between snapshots yet has a
tetrahedron on only one side, a bordering tetrahedron
should be inserted.

To find this bordering tetrahedron, the triangle needs to
be matched to a fourth point. To find an appropriate fourth
point, use the following algorithm:
• Two neighboring triangles are either matched to the

same point or to different points. If they are matched to
the same point no gap develops and nothing more
needs to be done. If they are matched to different
points a gap develops. To fill this gap, a tetrahedron
consisting of the line that the gap opens in and the two
points that the triangles are matched to is constructed.

• If this tetrahedron does not overlap any existing
tetrahedra, it is inserted into the structure

• If it overlaps existing tetrahedra, do for each
overlapping triangle (in the border of the overlapping
tetrahedra) that borders only one tetrahedron:
o Generate a tetrahedron from this triangle. The

fourth point is the point in the original line that
opened into the gap that the triangle does not
already contain.

Figure 3c shows the in-between state of Figure 3b after

gap filling. Figure 4b shows the tetrahedra that are
generated based on Figure 4a.

This tetrahedralization can be used to compute alpha-
cuts in the same way as a triangulation can in the non-
temporal case. Figure 5 shows an example
tetrahedralization with alpha-cuts 0.1, 0.25, 0.5 and 0.75
displayed at times 0, 0.5 and 1. Time 0 is the time of the
first snapshot and time 1 is the time of the second
snapshot. The core is displayed in a darker color than the
support. In Figure 5b, the tetrahedrons filling the gaps are
shown in a slightly lighter color than those originating as

triangles in either snapshot. An example of using the
interpolation algorithm on a real example is on the web on
the following URL, but is not included in the paper due to
its large size:

http://www.ux.uis.no/~tossebro/papers/Extra_figures_t
emporal_triangulation_paper.pdf

This example shows both two versions of the iso-lines
and a raster. The two versions are without and with
compensation for the jagged interpolation problem
described in section VI. The raster was generated by
asking the tetrahedralization for the fuzzy set value at each
cell in the raster, where dark blue is 1.0 and white is 0.0.

C. Further Considerations
In most cases this algorithm produces a usable

tetrahedralization. However, there are some cases in
which the tetrahedralization becomes problematic. In
some cases the closest point for a triangle in the support of
one snapshot is in fact inside the core or outside the object
in the other snapshot. This case produces strange
interpolation artifacts and filler tetrahedrons with a
constant function value. This case is eliminated by
requiring that triangles are matched to points in the same
region of the object. A triangle in the support (Where the
average of the function values of the three corners is
between 0 and 1) must be matched to a point on the outer
border, inner border, or inside the support.

D. Running Time of the Algorithm
In this section the letter n is used for the number of

points to be tetrahedralized and t is the number of
triangles generated by the Delaunay triangulations that are
used as input for the algorithm.

Construct Delaunay triangulations: O(n*log(n)) [19],
[3]

 First pass:
• For each triangle (t, increases linearly with n in two

dimensions according to Euler’s formula for planar
graphs):

Figure 4: Filling the gaps

a) In-between value without filling triangles. b) The individual tetrahedrons in the final representation

a) Time 0 b) Time 0.5 c) Time 1.0

Figure 5: Example of tetrahedralization used for interpolation

o Find closest point in second triangulation:
O(log(n)) using a spatial index

o Check resulting tetrahedron for overlap: O(log(t))
using a spatial index

o Insert new tetrahedron in spatial index: O(log(n))
• Total running time for all tetrahedrons: O(n*log(n))

Second pass:

• For each remaining triangle (this number probably
increases linearly with n. Although a shape with more
triangles is more complex, the probability of overlap
should stay the same as the number of triangles in the
neighborhood of the triangles, with which a
tetrahedron potentially overlaps, stays the same.)
o Find 10 closest points in other triangulation O(10 +

log(n)). K-nearest neighbor has a running time of
O(k + log(n)) using a spatial index according to [7]

o Check tetrahedrons for overlap O(10*log(n))
o Insert new tetrahedron in spatial index O(log(n))

• Total running time for all tetrahedrons:
O(10*n*log(n))

Third pass:

• For each remaining triangle (probably increases
linearly with n for the same reason as for the second
pass)
o Find closest point in second triangulation:

O(log(n)) using a spatial index
o Check resulting tetrahedron for overlap: O(log(t))

using a spatial index
o For each overlapping tetrahedron: remove it and

try to match the triangle as per 2nd pass. The
number of overlapping tetrahedrons can
theoretically be proportional to n but in most
practical cases is a small constant. Thus the
running time of this step is O(o*10*log(n)) where
o is the number of overlapping tetrahedrons.

• Total running time for all tetrahedrons: O(n*log(n))

Filling in the gaps:

• Checking the triangles: O(n) as each triangle must be
checked with 3 neighbors

• Create initial filling tetrahedron: O(1)
• Checking for overlap: O(log(n))

• Generating new tetrahedra: O(o), where o is the
number of overlaps. o can potentially be large, but
tests have shown that each triangle is overlapped by at
most one such initial tetrahedron and most are
overlapped by none, so the total o for all tetrahedra is
less than n.

Total O(n*log(n)) as each initial filler needs to be

checked for overlap. Checking for overlap is the step with
the highest asymptotic running time.

IV. HANDLING CHANGING TOPOLOGY
IN COMPLEX REGIONS

The algorithm described here also works on complex
uncertain regions. A complex uncertain region may have
several holes and may also have several disjoint core
regions. While the method of tetrahedralization does not
assume that the number of holes or core regions remains
constant, there are still problems with such changes in
topology. For instance, if a new core region appears
between two snapshots, the individual triangles in the new
core region may be matched to different points and
therefore create a strange interpolation. This is solved by
inserting an extra point in the triangulation in the other
snapshot, giving that extra point a function value of 1.0,
and matching all the triangles of the new core region to
that point. The same can be done for holes. The algorithm
is able to handle two core regions, support regions or holes
joining into one with only minor interpolation artifacts.

V. OTHER USES FOR THE ALGORITHM
The tetrahedralization algorithm is also capable of

interpolating the shape of the object between snapshots.
For most of the cases that have been tested the
interpolations that it creates are just as good as the
interpolations that are created from the algorithm in [16].
Both algorithms create some interpolation artifacts but as
long as the shapes consist of an adequate number of points
(no very sharp angles) the interpolations are fairly equal in
quality. One example of this is shown in Figure 6.

This algorithm can also be used to create a
tetrahedralization for a spatiotemporal field that is updated
at regular intervals but where the measurement points may
move, as might be the case with a geo-sensor network with
moving nodes such as a network measuring water

Figure 6: Tetrahedralization algorithm used for shape blending

a) Time 0 b) Time 0.5 c) Time 1.0

temperature at sea with nodes drifting along the ocean
currents. The difference is that the field would cover the
entire area of interest, and that there is no support and core
boundaries. The last point only means that there are less
limitations for the algorithm and the first point only means
that it might need more time as the number of points to be
triangulated may be much larger. Note that the algorithm
allows the users to use different sample points for the
different times of the spatiotemporal field but requires that
the entire field is updated at the same times.

VI. JAGGED INTERPOLATION PROBLEM
As long as the support of the object is roughly the

same width in the two snapshots, interpolation based on
tetrahedralizations works well. However, if it is used on
an object where the support grows or shrinks significantly,
a problem occurs as shown in Figure 7a. The support may
grow or shrink because the measurements at different
times may have different uncertainty. The effect shown in
the figure is caused by the fact that the values are
interpolated linearly along all the lines of the tetrahedrons.
Figure 7b and c shows a schematic overview of the
problem. The value is linearly interpolated along all the
lines including the dashed ones. The marked points show
where the value is 0.5 along each of them. While the 0.5
value should have been at the same place along both (the
position in which they cross) it is in fact much further
down.

A. Possible Solution: Triangulation From
Tetrahedralization
Several strategies might be used to solve this problem.

All of them have the problem that the iso-surfaces of
probability in the 3D representation no longer become
planar facets. The author has not been able to discover an
algorithm that both creates planar facets for the iso-
surfaces and does not suffer from the jagged interpolation
problem.

One solution for the jagged interpolation problem
might be to try to interpolate non-linearly along the
dashed lines but then the question arises as to which
function one should use. Additionally the normal formulas
for interpolating in a tetrahedron assume that the
interpolation is linear in all three dimensions. This means
that a non-linear interpolation in one dimension might
yield curved line segments even in single snapshots.

For this reason another approach was developed:
Compute a triangulation from the tetrahedralization and
use that to interpolate in two dimensions for the time
instant requested. This algorithm, run on the shape from
Figure 7a, is shown in Figure 8. The algorithm is as
follows:

At any time instant t1 in the time slice in question do
the following:
• For each tetrahedron create its representation at t1.

This will be either a triangle or a parallelogram.
• For each triangle created in this fashion insert it into

the new triangulation
• For each parallelogram created in this fashion split it

into two triangles along the shortest diagonal.
• For each point in the new triangulation that is not

already on the core or support boundary compute its
value based on the ratio of the distance to the core and
the distance to the outer edge of the support, as in [19].

• Use the resulting triangulation to create iso-lines of
probability values in points.

This avoids the problem as the probability values of

the vertices in the interior of the support are recalculated
at each time instant. However, it is computationally
somewhat more expensive and means that one cannot
create and store the iso-surfaces for the entire time slice
but must compute it individually for each time instant.

Running time:

a) Example: iso-line 0.5 at time 0.5 b) Cause

Figure 7: Jagged interpolation problem

Time 0

Time 1, scale as time 0

Time 0.5 at double scale
Red line is 0.5 iso-line

c) Cause

Figure 8: Triangulation from tetrahedralization for the example in
Figure 7a

• Finding the representation of each tetrahedron at t1:
O(t) where t is the number of tetrahedrons

• Splitting the parallelograms: O(t) as roughly half the
tetrahedrons become parallelograms.

• Computing new probability values: This requires
finding the closest point along core and support for all
the points in the interior of the support. O(t*log(t))
using a spatial index as the number of interior points is
proportional to the number of tetrahedrons

• Creating iso-lines: O(t) as each tetrahedron results in
either 1 (triangle) or 2 (parallelogram) triangles and
each triangle needs to be examined once.

Total running time O(t*log(t)), which is worse than

the O(t) running time for finding an iso-surface using the
original algorithm.

VII. SUMMARY
In this paper, a way to create a tetrahedralization of an

uncertain spatiotemporal object has been presented. This
method is then used to interpolate fuzzy set or probability
values. A problem with a naïve use of any
tetrahedralization method for interpolation has been
identified and a possible solution has been explored. The
solution solves the problem but has the drawback that one
cannot create iso-lines of probability once for the entire
spatiotemporal object but must create them separately for
each time instant.

REFERENCES
[1] V. T. de Almeida and R. H. Güting: Supporting uncertainty in

moving objects in network databases. In the proceedings of the
13th ACM workshop on Geographical Information Systems
(ACM-GIS), pages 31-40.

[2] Bajaj CL; Coyle EJ; Lin KN: Tetrahedral meshes from planar
cross-sections. In Computer Methods In Applied Mechanics And
Engineering, 1999, Volume: 179 Issue: 1-2 Pages: 31-52

[3] M. de Berg, M. van Krevald, M. Overmars and O. Schwarzkopf:
Computational Geometry: Algorithms and Applications, 2nd
edition. Springer-Verlag.

[4] L. P. Chew: Constrained Delaunay Triangulations. In Proc. 3rd Int.
Symp. on Computational Geometry, 1987, pages 215-222.

[5] R. Cheng, D. V. Kalashnikov, S. Prabhakar: Querying Imprecise
Data in Moving Object Environments. In IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, No. 9, 2004, pages
1112-1127.

[6] L. Forlizzi, R. H. Güting, E. Nardelli and M. Schneider: A Data
Model and Data Structures for Moving Objects Databases. In Proc.
ACM SIGMOD Int. Conf. on Management of Data (Dallas,
Texas), pages 319-330, 2000.

[7] M. Kolahdouzan and C. Shahabi: Voronoi-Based K Nearest
Neighbour Search for Spatial Network Databases. In Proceedings
of the Thirtieth int. conf. on Very Large Databases, (VLDB04),
pages 840-854, 2004.

[8] M.-J. Kraak, E. Verbree: Tetrahedrons and animated maps in 2D
and 3D space. In Proc. 5th Int. Symposium on Spatial Data
Handling (SDH), pages 63-71, 1992.

[9] D. Peuquet: Making Space for Time: Issues in Space-Time Data
Representation. In GeoInformatica 5:1, pages 11-32, 2001.

[10] B. Plewe: The Nature of Uncertainty in Historical Geographic
Information. In Transaction in GIS, vol. 6, issue 4, pages 431-456,
2002.

[11] D. Pfoser and N. Tryfona: Capturing Fuzziness and Uncertainty of
Spatiotemporal Objects. In Proc. Advances in Databases and
Information Systems, LNCS vol. 2151, 2001, pages 112-126,
Springer Verlag.

[12] D. Pfoser, N. Tryfona, C. S. Jensen: Indeterminacy and
Spatiotemporal Data: Basic Definitions and Case Study. In
Geoinformatica, Vol. 9, No. 3, pages 211-236, 2005.

[13] J. R. Shewchuk: Sweep Algorithms for Constructing Higher-
Dimensional Constrained Delaunay Triangulations. In Proc. of the
16th Annual Symp. on Computational Geometry (Hong Kong),
pages 350-359, Association for Computing Machinery, June 2000

[14] J. R. Shewchuk: Updating and constructing Constrained Delaunay
and Constrained Regular triangulations by Flips.

[15] Hang Si: Constrained Delaunay tetrahedral mesh generation and
refinement. In Finite Elements in Analysis and Design no.
46(2010), pages 33-46

[16] E. Tøssebro and R. H. Güting: Creating Representations for
Continuously Moving Regions from Observations. In Proc. 7th Int.
Symp. on Spatial and Temporal Databases, pages 321- 344, July
2001.

[17] E. Tøssebro and M. Nygård: An Advanced Discrete Model for
Uncertain Spatial Data. In Proc. 3rd Int. Conf. on Web-Age
Information Management (WAIM), pages 37-51, August 2002.

[18] E. Tøssebro and M. Nygård: Extending Discrete Models for
Uncertain Spatial Data to Spatiotemporal Data. Published in Proc.
2nd IASTED International Conference on Information and
Knowledge Sharing, pages 57-68.

[19] E. Tøssebro and M. Nygård: Computing the Probabilities of
Operations in Vector Models for Uncertain Spatial Data. Published
in Proc. IEEE int. conference on Signal-Image Technologies and
Internet-Based Systems (SITIS), pages 78- 85, 2008.

[20] L. A. Zadeh: Fuzzy sets. In Information and Control, Vol. 8, 1965,
pp. 338-353.

	I. Introduction
	II. Related Work
	A. 3D Triangulation (tetrahedralization)
	B. Spatiotemporal databases
	C. Spatiotemporal uncertainty

	III. Triangulating Spatiotemporal Objects
	A. Creating Tetrahedrons from Triangles
	B. Filling in the Gaps
	C. Further Considerations
	D. Running Time of the Algorithm

	IV. Handling Changing Topology in Complex Regions
	V. Other Uses for the Algorithm
	VI. Jagged Interpolation Problem
	A. Possible Solution: Triangulation From Tetrahedralization

	VII. Summary
	References

