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Abstract - This paper looks at ways of quickly interpolating 
probability values or fuzzy set values for uncertain 
spatiotemporal objects that may change continuously over 
time. The paper starts with presenting a way to compute a 
tetrahedralization of an uncertain spatiotemporal object and 
using that to compute consistent interpolations. This 
approach also turns out to be able to create fairly good 
interpolations of the shape of the spatiotemporal object 
without needing an extra algorithm for this purpose. 
However, a naïve use of any tetrahedralization turns out to 
create interpolation artifacts in those objects that become 
significantly more or less uncertain with time. The paper 
then presents a way to overcome this issue at the cost of 
more processing. 

Keywords: Interpolation, Spatio-temporal uncertainty, 
Tetrahedralization 

I.  INTRODUCTION 
In [17] and [18], a method for storing uncertainty in 

spatiotemporal data was presented. The method is based 
around storing a region in which the object might be, 
called the support (a term from fuzzy set theory [20]). For 
regions an additional region is stored that indicated where 
the object certainly is, called the core. [19] presents a 
method for quickly interpolating the probability functions 
for non-temporal two-dimensional spatial data using a 
Delaunay triangulation of the support. This method does 
not assume a particular probability function but is used to 
quickly generate approximate probability values where the 
function is unknown or very time-consuming to calculate. 

This paper presents an algorithm for quickly 
interpolating probabilities or fuzzy set values that works 
for spatiotemporal objects as well. It is based on the 
uncertain time slice model for uncertain spatiotemporal 
objects as presented in [18] and described in section II.B 
and II.C. A time slice of a spatiotemporal object is a 
special case of a 3D object, and creating something like a 
Delaunay triangulation in three dimensions is significantly 
more complex than for the two-dimensional case in [19]. 

Two example applications of such a system are given 
below: 

Example 1: If you are trying to determine the habitat of 
a species of plant or animal, you have to rely on 
observations of that plant or animal. Secondly, species 
often have areas in which they may appear but are not 
common. Such a habitat may be represented by a fuzzy set 
in which the degree of membership indicates whether the 
species is common or rare there. For animal habitats a 
value of 1.0 might indicate areas in which the animals 
usually live while a value close to 0 might indicate an area 

in which the animals may occasionally wander but do not 
remain for long. Because of both natural factors and 
human activities the habitats of both plants and animals 
change continuously. For instance the king crab is steadily 
spreading southwards along the northern European 
Atlantic coastline from where it was first introduced by the 
Russians. 

Example 2: [9] mentions an example of uncertain 
spatiotemporal regions: The extent of kingdoms in the 
distant past. The evidence of the extent of past kingdoms 
and empires must be based on archaeological evidence and 
what textual evidence remains. This textual evidence was 
often written to glorify particular kings or emperors and 
may have exaggerated the size of their empires. These 
borders are often highly uncertain and changed with time. 
While the changes may have been discrete (conquests) 
when they occurred, we do not know exactly when they 
occurred and it is therefore better to visualize the extents as 
continuously changing, and use color shading to represent 
the estimated likelihood of the empire extending that far. 

Another use for the method is as an interpolator for 
uncertain spatiotemporal objects. Like the algorithm in 
[16], this method produces an interpolation of an object 
between two snapshots. The original intention when this 
work was begun was to use the interpolation method from 
[16] to create the core and support boundaries and then 
tetrahedralize the support. However, it was discovered that 
the tetrahedralization algorithm itself was capable of 
producing a good interpolation, so interpolating the 
boundaries in advance was not necessary. 

A third use of the algorithm is to create temporal 
version of a triangulated irregular network (TIN). This can 
be used to create a spatiotemporal field. If the entire TIN is 
updated at the same time the tetrahedralization generated 
by the algorithm in this paper can be used to create a 
spatiotemporal field model. The algorithm requires that the 
entire TIN is updated at the same time but does not require 
that the same measurement points are used each time. If 
the TIN is not updated at the same time, there are several 
algorithms already published that can be used (See section 
II.A). These have a longer running time but are more 
general. 

II. RELATED WORK 
This section is divided into three subsections because 

this paper draws on work in three different directions. 3D 
Triangulations is work on creating tetrahedralizations (the 
3D equivalent of a triangulation) of 3D objects. This is 
used in this paper to create a representation of an uncertain 
time slice of the object as a 3D object. Spatiotemporal 



databases and uncertainty in spatiotemporal databases are 
the remaining two sections.  

A. 3D Triangulation (tetrahedralization) 
The 3D Delaunay triangulation is the inverse of the 3D 

Voronoi diagram in the same manner as for 2D. This 3D 
Voronoi diagram can be computed in O(n2) time 
according to [3] page 161. According to [13], the 
Delaunay triangulation of any dimension can be computed 
in O(n*t) time where n is the number of points and t is the 
number of simplices in the final result. In most cases this 
is O(n2 + t*log(n)) according to [14]. The topic of 
generating a Delaunay tetrahedralization of general three-
dimensional shapes has been extensively studied in the 
computational geometry community. [2] and [15] are 
other examples of papers studying variants of this 
problem. The problem in [2] resembles the problem in this 
paper as it looks on three-dimensional regions that have 
been split into slices so that the only vertices are in the top 
and bottom planes. It differs in that the boundary of the 
object is specified in advance whereas the algorithm 
proposed in this paper is free to set the boundary of the 
interpolation. Using tetrahedralizations for shape blending 
has been done in for instance [8], but this paper does not 
describe how to compute the tetrahedralization and has a 
very different focus from this work. 

B. Spatiotemporal databases 
The model for uncertainty in spatiotemporal databases 

presented in this paper will build on the time slice model 
for spatial data presented in [6]. 

If one assumes that one starts with a series of 
snapshots of the continuously moving object, a time slice 
is the time period between two snapshots. In each such 
period the object is assumed to change based on fairly 
simple functions. An example of this is shown in Figure 
1a. 

A point moves along a straight line. The end points of 
a line segment also move in a straight line, and the line 
segment itself cannot rotate. This restriction is there to 
ensure that the squares that are formed in space-time are 
planar rather than curved. Planar squares are much easier 
to deal with than curved ones. A line segment that rotate 
is transformed into two line segments each of which 
shrink to a point in the other snapshot like shown in 
Figure 1b. 

In [16], a method for generating time slices like those 
from [6] from snapshots is presented. This works by 
building a 3D representation of the snapshot that is able to 

produce intermediate results for times between the 
snapshots. Because it is very unlikely that a line segment 
does not rotate at all, this method assumes that all line 
segments in one snapshot should be matched to points in 
the other like shown in Figure 1b. 

C. Spatiotemporal uncertainty 
[5] contains a model of uncertain points and shows 

some computations on this model. [11] contains a general 
model of spatiotemporal objects and [12] shows one 
example of how to use it for moving points. [10] describes 
a conceptual model of the different kinds of uncertainty 
that exist in a spatiotemporal database. [1] describes an 
algebra of uncertain moving points on a road network.  

The basic method for representing uncertainty in 
spatial databases that is used in this paper was presented 
in [17]. In this representation an uncertain spatial object is 
represented as a support region, even if the object is a 
point or line. The support region is the region in which the 
object might possibly be. Region objects also have a core, 
which is the place where the object is guaranteed to be. 
Uncertain points and lines instead have a point or line of 
maximum probability which is the point or line in which 
the object is most likely to be. 

In some applications (like the one from Example 1), 
one might want to compute the probability or fuzzy set 
value of the object in a location in the support. The 
method from [17] assumes that the probability falls from 
the core to the outer edge of the support according to 
some predefined function. One way to do this that ensures 
consistent answers is to create a triangulation of the 
support and use the triangulation to compute the 
probability value or fuzzy set value. Consistent answers in 
this case means that the answer to the question “Find the 
border of the area with at least 50% chance of being inside 
the object” is consistent with the answer to the question 
“find the probability of point X being inside the object”. 

The probability function is assumed to take an input 
value that is between 0 and 1. This value indicates the 
relative distance to the edge of the support where 0 is at 
the edge of the support and 1 is at the edge of the core. To 
find the distance value of a point, compute the 3D plane 
defined by the triangle, with the value as the third 
dimension, and then find the distance as the height (value) 
of the plane at that point. 

 [19] presents a method for computing such a 
triangulation for a single snapshot using constrained 
Delaunay triangulation ([4]) as a basis. This paper will 
extend that method to an entire time slice. 

Figure 1: Sliced Representation of spatiotemporal objects 



III. TRIANGULATING SPATIOTEMPORAL OBJECTS 
A database storing temporal geographic objects can be 

compared to a database storing three-dimensional spatial 
objects. This means that to extend the triangulation-based 
method of computing probabilities to the spatiotemporal 
case one would need to create a three-dimensional 
triangulation – a tetrahedralization. As mentioned in 
section II.A, many algorithms have already been 
developed for this purpose. A new algorithm was 
developed both in order to try to make one that is faster 
than existing solutions for this special case and to see if 
the tetrahedralization algorithm could also be used for 
shape interpolation. Another goal is to test whether such 
an algorithm always generates a result for the special case 
studied here. In the general case one cannot always create 
a constrained Delaunay tetrahedralization without 
inserting extra points [13]. 

This paper will not consider temporal uncertainty in 
the snapshots. [18] describes some ways of eliminating 
that uncertainty from the data model by converting it into 
spatial uncertainty, and this paper assumes that such a 
method has been used prior to the tetrahedralization. 

The basic idea of the algorithm is to use the Delaunay 
triangulations of the two snapshots as a basis for creating 
the 3D tetrahedralization. Thus the first step is to 
construct a legal constrained Delaunay triangulation of 
each snapshot using the algorithm from [19]. After this 
the algorithm has two steps: 

A. Creating Tetrahedrons from Triangles 
After the triangulation is created, each triangle in one 

snapshot is matched to a point in the second, forming the 
initial tetrahedralization. This matching process is done in 
three passes. In the first pass each triangle is matched to 
the closest vertex in the other snapshot. Then the algorithm 

checks whether it overlaps any of the previously generated 
tetrahedrons. If it does, the tetrahedron is discarded and the 
algorithm moves on to the next triangle and tries to match 
that. This process is illustrated for a single triangle in 
Figure 2. In Figure 2, the core of the region is black and 
the support is gray-shaded.  

In the second pass, the algorithm tries to construct legal 
(non-overlapping) tetrahedrons for the triangles that were 
discarded in step 1 due to the tetrahedron overlapping 
another tetrahedron. It constructs the tetrahedrons using 
other points from the other snapshot, starting with the next 
closest. The current implementation of the application tries 
the ten nearest neighbors, testing for overlap until it finds 
one that does not overlap or it has used up the ten 
neighbors. The number ten was chosen to test enough 
points without testing all the points. A version testing all 
the points did not work noticeably better.  

In the third pass, the algorithm creates a tetrahedron for 
each triangle remaining after the second pass by matching 
it to the nearest neighbor (the same tetrahedron that was 
tried in the first pass). Then a list of overlapping tetrahedra 
is created. The algorithm then tries to create new 
tetrahedral from the triangles that were used to create the 
tetrahedra in the overlap list. It created these new 
tetrahedra using the same method as in the second pass. 

This method almost always manages to find a correct 
match for all the triangles. In the few remaining cases, 
moving a series of matches manually has always produced 
a good result. A Schönhardt polyhedron or other 
untetrahedralizable shape has not occurred in any of the 
tests of the program. Additionally, the algorithm has a 
random element (because the triangulation algorithm used 
is randomized and creates different triangulations each 
time it is run. Thus the triangles arrive in different orders 
to the tetrahedralizer). This means that even if the 
algorithm failed once it may succeed next time for the 
same time slice of the same object. 

B. Filling in the Gaps 
The tetrahedralization generated in Section III.A will 

be good at the time of the snapshots but will have large 
holes in between. In Figure 3a and b, this initial 
tetrahedralization of the two snapshots from Figure 2 is 
used to generate a snapshot halfway between the two 
initial snapshots. Figure 4a shows the tetrahedral as well as 
the in-between state. The holes in the tetrahedralization are 
readily apparent. However, these holes are themselves 
tetrahedra or a set of tetrahedra. None of the tests of the 
algorithm have turned up a case where this was not true, 
but the author has no mathematical proof that this is 
always the case. The basic idea for filling the gaps is to 

Figure 2: Matching a triangle to a point 

a) Snapshots b) In-between state, only initial tetrahedra c) After gap filling 

Figure 3: Example of the gap-filling algorithm 



check the edges of the tetrahedra. Each tetrahedron is 
bounded by four triangular surfaces. Those surfaces that go 
between snapshots should have a tetrahedron on each side. 
For each surface that goes between snapshots yet has a 
tetrahedron on only one side, a bordering tetrahedron 
should be inserted. 

To find this bordering tetrahedron, the triangle needs to 
be matched to a fourth point. To find an appropriate fourth 
point, use the following algorithm: 
• Two neighboring triangles are either matched to the 

same point or to different points. If they are matched to 
the same point no gap develops and nothing more 
needs to be done. If they are matched to different 
points a gap develops. To fill this gap, a tetrahedron 
consisting of the line that the gap opens in and the two 
points that the triangles are matched to is constructed. 

• If this tetrahedron does not overlap any existing 
tetrahedra, it is inserted into the structure 

• If it overlaps existing tetrahedra, do for each 
overlapping triangle (in the border of the overlapping 
tetrahedra) that borders only one tetrahedron: 
o Generate a tetrahedron from this triangle. The 

fourth point is the point in the original line that 
opened into the gap that the triangle does not 
already contain. 

 
Figure 3c shows the in-between state of Figure 3b after 

gap filling. Figure 4b shows the tetrahedra that are 
generated based on Figure 4a. 

This tetrahedralization can be used to compute alpha-
cuts in the same way as a triangulation can in the non-
temporal case. Figure 5 shows an example 
tetrahedralization with alpha-cuts 0.1, 0.25, 0.5 and 0.75 
displayed at times 0, 0.5 and 1. Time 0 is the time of the 
first snapshot and time 1 is the time of the second 
snapshot. The core is displayed in a darker color than the 
support. In Figure 5b, the tetrahedrons filling the gaps are 
shown in a slightly lighter color than those originating as 

triangles in either snapshot. An example of using the 
interpolation algorithm on a real example is on the web on 
the following URL, but is not included in the paper due to 
its large size: 

http://www.ux.uis.no/~tossebro/papers/Extra_figures_t
emporal_triangulation_paper.pdf 

This example shows both two versions of the iso-lines 
and a raster. The two versions are without and with 
compensation for the jagged interpolation problem 
described in section VI. The raster was generated by 
asking the tetrahedralization for the fuzzy set value at each 
cell in the raster, where dark blue is 1.0 and white is 0.0. 

C. Further Considerations 
In most cases this algorithm produces a usable 

tetrahedralization. However, there are some cases in 
which the tetrahedralization becomes problematic. In 
some cases the closest point for a triangle in the support of 
one snapshot is in fact inside the core or outside the object 
in the other snapshot. This case produces strange 
interpolation artifacts and filler tetrahedrons with a 
constant function value. This case is eliminated by 
requiring that triangles are matched to points in the same 
region of the object. A triangle in the support (Where the 
average of the function values of the three corners is 
between 0 and 1) must be matched to a point on the outer 
border, inner border, or inside the support. 

D. Running Time of the Algorithm 
In this section the letter n is used for the number of 

points to be tetrahedralized and t is the number of 
triangles generated by the Delaunay triangulations that are 
used as input for the algorithm. 

Construct Delaunay triangulations: O(n*log(n)) [19], 
[3] 

   First pass:  
• For each triangle (t, increases linearly with n in two 

dimensions according to Euler’s formula for planar 
graphs): 

Figure 4: Filling the gaps 

a) In-between value without filling triangles. b) The individual tetrahedrons in the final representation 

a) Time 0 b) Time 0.5 c) Time 1.0 

Figure 5: Example of tetrahedralization used for interpolation 



o Find closest point in second triangulation: 
O(log(n)) using a spatial index 

o Check resulting tetrahedron for overlap: O(log(t)) 
using a spatial index 

o Insert new tetrahedron in spatial index: O(log(n)) 
• Total running time for all tetrahedrons: O(n*log(n)) 

 
Second pass:  

• For each remaining triangle (this number probably 
increases linearly with n. Although a shape with more 
triangles is more complex, the probability of overlap 
should stay the same as the number of triangles in the 
neighborhood of the triangles, with which a 
tetrahedron potentially overlaps, stays the same.)  
o Find 10 closest points in other triangulation O(10 + 

log(n)). K-nearest neighbor has a running time of 
O(k + log(n)) using a spatial index according to [7] 

o Check tetrahedrons for overlap O(10*log(n)) 
o Insert new tetrahedron in spatial index O(log(n)) 

• Total running time for all tetrahedrons: 
O(10*n*log(n)) 
 
Third pass:  

• For each remaining triangle (probably increases 
linearly with n for the same reason as for the second 
pass) 
o Find closest point in second triangulation: 

O(log(n)) using a spatial index 
o Check resulting tetrahedron for overlap: O(log(t)) 

using a spatial index 
o For each overlapping tetrahedron: remove it and 

try to match the triangle as per 2nd pass. The 
number of overlapping tetrahedrons can 
theoretically be proportional to n but in most 
practical cases is a small constant. Thus the 
running time of this step is O(o*10*log(n)) where 
o is the number of overlapping tetrahedrons. 

• Total running time for all tetrahedrons: O(n*log(n)) 
 
Filling in the gaps: 

• Checking the triangles: O(n) as each triangle must be 
checked with 3 neighbors 

• Create initial filling tetrahedron: O(1) 
• Checking for overlap: O(log(n)) 

• Generating new tetrahedra: O(o), where o is the 
number of overlaps. o can potentially be large, but 
tests have shown that each triangle is overlapped by at 
most one such initial tetrahedron and most are 
overlapped by none, so the total o for all tetrahedra is 
less than n. 
 
Total O(n*log(n)) as each initial filler needs to be 

checked for overlap. Checking for overlap is the step with 
the highest asymptotic running time. 

IV. HANDLING CHANGING TOPOLOGY  
IN COMPLEX REGIONS 

The algorithm described here also works on complex 
uncertain regions. A complex uncertain region may have 
several holes and may also have several disjoint core 
regions. While the method of tetrahedralization does not 
assume that the number of holes or core regions remains 
constant, there are still problems with such changes in 
topology. For instance, if a new core region appears 
between two snapshots, the individual triangles in the new 
core region may be matched to different points and 
therefore create a strange interpolation. This is solved by 
inserting an extra point in the triangulation in the other 
snapshot, giving that extra point a function value of 1.0, 
and matching all the triangles of the new core region to 
that point. The same can be done for holes. The algorithm 
is able to handle two core regions, support regions or holes 
joining into one with only minor interpolation artifacts. 

V. OTHER USES FOR THE ALGORITHM 
The tetrahedralization algorithm is also capable of 

interpolating the shape of the object between snapshots. 
For most of the cases that have been tested the 
interpolations that it creates are just as good as the 
interpolations that are created from the algorithm in [16]. 
Both algorithms create some interpolation artifacts but as 
long as the shapes consist of an adequate number of points 
(no very sharp angles) the interpolations are fairly equal in 
quality. One example of this is shown in Figure 6.  

This algorithm can also be used to create a 
tetrahedralization for a spatiotemporal field that is updated 
at regular intervals but where the measurement points may 
move, as might be the case with a geo-sensor network with 
moving nodes such as a network measuring water 

Figure 6: Tetrahedralization algorithm used for shape blending 

a) Time 0 b) Time 0.5 c) Time 1.0 



temperature at sea with nodes drifting along the ocean 
currents. The difference is that the field would cover the 
entire area of interest, and that there is no support and core 
boundaries. The last point only means that there are less 
limitations for the algorithm and the first point only means 
that it might need more time as the number of points to be 
triangulated may be much larger. Note that the algorithm 
allows the users to use different sample points for the 
different times of the spatiotemporal field but requires that 
the entire field is updated at the same times.  

VI. JAGGED INTERPOLATION PROBLEM 
As long as the support of the object is roughly the 

same width in the two snapshots, interpolation based on 
tetrahedralizations works well. However, if it is used on 
an object where the support grows or shrinks significantly, 
a problem occurs as shown in Figure 7a. The support may 
grow or shrink because the measurements at different 
times may have different uncertainty. The effect shown in 
the figure is caused by the fact that the values are 
interpolated linearly along all the lines of the tetrahedrons. 
Figure 7b and c shows a schematic overview of the 
problem. The value is linearly interpolated along all the 
lines including the dashed ones. The marked points show 
where the value is 0.5 along each of them. While the 0.5 
value should have been at the same place along both (the 
position in which they cross) it is in fact much further 
down. 

A. Possible Solution: Triangulation From 
Tetrahedralization 
Several strategies might be used to solve this problem. 

All of them have the problem that the iso-surfaces of 
probability in the 3D representation no longer become 
planar facets. The author has not been able to discover an 
algorithm that both creates planar facets for the iso-
surfaces and does not suffer from the jagged interpolation 
problem. 

One solution for the jagged interpolation problem 
might be to try to interpolate non-linearly along the 
dashed lines but then the question arises as to which 
function one should use. Additionally the normal formulas 
for interpolating in a tetrahedron assume that the 
interpolation is linear in all three dimensions. This means 
that a non-linear interpolation in one dimension might 
yield curved line segments even in single snapshots. 

For this reason another approach was developed: 
Compute a triangulation from the tetrahedralization and 
use that to interpolate in two dimensions for the time 
instant requested. This algorithm, run on the shape from 
Figure 7a, is shown in Figure 8. The algorithm is as 
follows: 

At any time instant t1 in the time slice in question do 
the following: 
• For each tetrahedron create its representation at t1. 

This will be either a triangle or a parallelogram. 
• For each triangle created in this fashion insert it into 

the new triangulation 
• For each parallelogram created in this fashion split it 

into two triangles along the shortest diagonal. 
• For each point in the new triangulation that is not 

already on the core or support boundary compute its 
value based on the ratio of the distance to the core and 
the distance to the outer edge of the support, as in [19]. 

• Use the resulting triangulation to create iso-lines of 
probability values in points. 
 
This avoids the problem as the probability values of 

the vertices in the interior of the support are recalculated 
at each time instant. However, it is computationally 
somewhat more expensive and means that one cannot 
create and store the iso-surfaces for the entire time slice 
but must compute it individually for each time instant. 

Running time: 

a) Example: iso-line 0.5 at time 0.5 b) Cause 

Figure 7: Jagged interpolation problem 
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c) Cause 

Figure 8: Triangulation from tetrahedralization for the example in 
Figure 7a 



• Finding the representation of each tetrahedron at t1: 
O(t) where t is the number of tetrahedrons 

• Splitting the parallelograms: O(t) as roughly half the 
tetrahedrons become parallelograms. 

• Computing new probability values: This requires 
finding the closest point along core and support for all 
the points in the interior of the support. O(t*log(t)) 
using a spatial index as the number of interior points is 
proportional to the number of tetrahedrons 

• Creating iso-lines: O(t) as each tetrahedron results in 
either 1 (triangle) or 2 (parallelogram) triangles and 
each triangle needs to be examined once. 
 
Total running time O(t*log(t)), which is worse than 

the O(t) running time for finding an iso-surface using the 
original algorithm. 

VII. SUMMARY 
In this paper, a way to create a tetrahedralization of an 

uncertain spatiotemporal object has been presented. This 
method is then used to interpolate fuzzy set or probability 
values. A problem with a naïve use of any 
tetrahedralization method for interpolation has been 
identified and a possible solution has been explored. The 
solution solves the problem but has the drawback that one 
cannot create iso-lines of probability once for the entire 
spatiotemporal object but must create them separately for 
each time instant. 
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